kicad/common/geometry/shape_poly_set.cpp

1975 lines
51 KiB
C++
Raw Normal View History

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2015-2019 CERN
* @author Tomasz Wlostowski <tomasz.wlostowski@cern.ch>
* @author Alejandro García Montoro <alejandro.garciamontoro@gmail.com>
*
* Point in polygon algorithm adapted from Clipper Library (C) Angus Johnson,
* subject to Clipper library license.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <vector>
#include <cstdio>
#include <set>
#include <list>
#include <algorithm>
#include <unordered_set>
#include <memory>
#include <md5_hash.h>
#include <map>
#include <make_unique.h>
#include <geometry/geometry_utils.h>
#include <geometry/shape.h>
#include <geometry/shape_line_chain.h>
#include <geometry/shape_poly_set.h>
#include <geometry/polygon_triangulation.h>
using namespace ClipperLib;
SHAPE_POLY_SET::SHAPE_POLY_SET() :
SHAPE( SH_POLY_SET )
{
}
SHAPE_POLY_SET::SHAPE_POLY_SET( const SHAPE_POLY_SET& aOther, bool aDeepCopy ) :
SHAPE( SH_POLY_SET ), m_polys( aOther.m_polys )
{
if( aOther.IsTriangulationUpToDate() )
{
for( unsigned i = 0; i < aOther.TriangulatedPolyCount(); i++ )
m_triangulatedPolys.push_back(
std::make_unique<TRIANGULATED_POLYGON>( *aOther.TriangulatedPolygon( i ) ) );
m_hash = aOther.GetHash();
m_triangulationValid = true;
}
}
SHAPE_POLY_SET::~SHAPE_POLY_SET()
{
}
SHAPE* SHAPE_POLY_SET::Clone() const
{
return new SHAPE_POLY_SET( *this );
}
bool SHAPE_POLY_SET::GetRelativeIndices( int aGlobalIdx,
SHAPE_POLY_SET::VERTEX_INDEX* aRelativeIndices ) const
{
int polygonIdx = 0;
unsigned int contourIdx = 0;
int vertexIdx = 0;
int currentGlobalIdx = 0;
for( polygonIdx = 0; polygonIdx < OutlineCount(); polygonIdx++ )
{
const POLYGON currentPolygon = CPolygon( polygonIdx );
for( contourIdx = 0; contourIdx < currentPolygon.size(); contourIdx++ )
{
SHAPE_LINE_CHAIN currentContour = currentPolygon[contourIdx];
int totalPoints = currentContour.PointCount();
for( vertexIdx = 0; vertexIdx < totalPoints; vertexIdx++ )
{
// Check if the current vertex is the globally indexed as aGlobalIdx
if( currentGlobalIdx == aGlobalIdx )
{
aRelativeIndices->m_polygon = polygonIdx;
aRelativeIndices->m_contour = contourIdx;
aRelativeIndices->m_vertex = vertexIdx;
return true;
}
// Advance
currentGlobalIdx++;
}
}
}
return false;
}
bool SHAPE_POLY_SET::GetGlobalIndex( SHAPE_POLY_SET::VERTEX_INDEX aRelativeIndices,
int& aGlobalIdx )
{
int selectedVertex = aRelativeIndices.m_vertex;
unsigned int selectedContour = aRelativeIndices.m_contour;
unsigned int selectedPolygon = aRelativeIndices.m_polygon;
// Check whether the vertex indices make sense in this poly set
if( selectedPolygon < m_polys.size() && selectedContour < m_polys[selectedPolygon].size()
&& selectedVertex < m_polys[selectedPolygon][selectedContour].PointCount() )
{
POLYGON currentPolygon;
aGlobalIdx = 0;
for( unsigned int polygonIdx = 0; polygonIdx < selectedPolygon; polygonIdx++ )
{
currentPolygon = Polygon( polygonIdx );
for( unsigned int contourIdx = 0; contourIdx < currentPolygon.size(); contourIdx++ )
{
aGlobalIdx += currentPolygon[contourIdx].PointCount();
}
}
currentPolygon = Polygon( selectedPolygon );
for( unsigned int contourIdx = 0; contourIdx < selectedContour; contourIdx++ )
{
aGlobalIdx += currentPolygon[contourIdx].PointCount();
}
aGlobalIdx += selectedVertex;
return true;
}
else
{
return false;
}
}
int SHAPE_POLY_SET::NewOutline()
{
SHAPE_LINE_CHAIN empty_path;
POLYGON poly;
empty_path.SetClosed( true );
poly.push_back( empty_path );
m_polys.push_back( poly );
return m_polys.size() - 1;
}
int SHAPE_POLY_SET::NewHole( int aOutline )
{
SHAPE_LINE_CHAIN empty_path;
empty_path.SetClosed( true );
// Default outline is the last one
if( aOutline < 0 )
aOutline += m_polys.size();
// Add hole to the selected outline
m_polys[aOutline].push_back( empty_path );
return m_polys.back().size() - 2;
}
int SHAPE_POLY_SET::Append( int x, int y, int aOutline, int aHole, bool aAllowDuplication )
{
if( aOutline < 0 )
aOutline += m_polys.size();
int idx;
if( aHole < 0 )
idx = 0;
else
idx = aHole + 1;
assert( aOutline < (int) m_polys.size() );
assert( idx < (int) m_polys[aOutline].size() );
m_polys[aOutline][idx].Append( x, y, aAllowDuplication );
return m_polys[aOutline][idx].PointCount();
}
void SHAPE_POLY_SET::InsertVertex( int aGlobalIndex, VECTOR2I aNewVertex )
{
VERTEX_INDEX index;
if( aGlobalIndex < 0 )
aGlobalIndex = 0;
if( aGlobalIndex >= TotalVertices() )
{
Append( aNewVertex );
}
else
{
// Assure the position to be inserted exists; throw an exception otherwise
if( GetRelativeIndices( aGlobalIndex, &index ) )
m_polys[index.m_polygon][index.m_contour].Insert( index.m_vertex, aNewVertex );
else
throw( std::out_of_range( "aGlobalIndex-th vertex does not exist" ) );
}
}
int SHAPE_POLY_SET::VertexCount( int aOutline, int aHole ) const
{
if( m_polys.size() == 0 ) // Empty poly set
return 0;
if( aOutline < 0 ) // Use last outline
aOutline += m_polys.size();
int idx;
if( aHole < 0 )
idx = 0;
else
idx = aHole + 1;
if( aOutline >= (int) m_polys.size() ) // not existing outline
return 0;
if( idx >= (int) m_polys[aOutline].size() ) // not existing hole
return 0;
return m_polys[aOutline][idx].PointCount();
}
SHAPE_POLY_SET SHAPE_POLY_SET::Subset( int aFirstPolygon, int aLastPolygon )
{
assert( aFirstPolygon >= 0 && aLastPolygon <= OutlineCount() );
SHAPE_POLY_SET newPolySet;
for( int index = aFirstPolygon; index < aLastPolygon; index++ )
{
newPolySet.m_polys.push_back( Polygon( index ) );
}
return newPolySet;
}
VECTOR2I& SHAPE_POLY_SET::Vertex( int aIndex, int aOutline, int aHole )
{
if( aOutline < 0 )
aOutline += m_polys.size();
int idx;
if( aHole < 0 )
idx = 0;
else
idx = aHole + 1;
assert( aOutline < (int) m_polys.size() );
assert( idx < (int) m_polys[aOutline].size() );
return m_polys[aOutline][idx].Point( aIndex );
}
const VECTOR2I& SHAPE_POLY_SET::CVertex( int aIndex, int aOutline, int aHole ) const
{
if( aOutline < 0 )
aOutline += m_polys.size();
int idx;
if( aHole < 0 )
idx = 0;
else
idx = aHole + 1;
assert( aOutline < (int) m_polys.size() );
assert( idx < (int) m_polys[aOutline].size() );
return m_polys[aOutline][idx].CPoint( aIndex );
}
VECTOR2I& SHAPE_POLY_SET::Vertex( int aGlobalIndex )
{
SHAPE_POLY_SET::VERTEX_INDEX index;
// Assure the passed index references a legal position; abort otherwise
if( !GetRelativeIndices( aGlobalIndex, &index ) )
throw( std::out_of_range( "aGlobalIndex-th vertex does not exist" ) );
return m_polys[index.m_polygon][index.m_contour].Point( index.m_vertex );
}
const VECTOR2I& SHAPE_POLY_SET::CVertex( int aGlobalIndex ) const
{
SHAPE_POLY_SET::VERTEX_INDEX index;
// Assure the passed index references a legal position; abort otherwise
if( !GetRelativeIndices( aGlobalIndex, &index ) )
throw( std::out_of_range( "aGlobalIndex-th vertex does not exist" ) );
return m_polys[index.m_polygon][index.m_contour].CPoint( index.m_vertex );
}
VECTOR2I& SHAPE_POLY_SET::Vertex( SHAPE_POLY_SET::VERTEX_INDEX index )
{
return Vertex( index.m_vertex, index.m_polygon, index.m_contour - 1 );
}
const VECTOR2I& SHAPE_POLY_SET::CVertex( SHAPE_POLY_SET::VERTEX_INDEX index ) const
{
return CVertex( index.m_vertex, index.m_polygon, index.m_contour - 1 );
}
bool SHAPE_POLY_SET::GetNeighbourIndexes( int aGlobalIndex, int* aPrevious, int* aNext )
{
SHAPE_POLY_SET::VERTEX_INDEX index;
// If the edge does not exist, throw an exception, it is an illegal access memory error
if( !GetRelativeIndices( aGlobalIndex, &index ) )
return false;
// Calculate the previous and next index of aGlobalIndex, corresponding to
// the same contour;
VERTEX_INDEX inext = index;
int lastpoint = m_polys[index.m_polygon][index.m_contour].SegmentCount();
if( index.m_vertex == 0 )
{
index.m_vertex = lastpoint;
inext.m_vertex = 1;
}
else if( index.m_vertex == lastpoint )
{
index.m_vertex--;
inext.m_vertex = 0;
}
else
{
inext.m_vertex++;
index.m_vertex--;
}
if( aPrevious )
{
int previous;
GetGlobalIndex( index, previous );
*aPrevious = previous;
}
if( aNext )
{
int next;
GetGlobalIndex( inext, next );
*aNext = next;
}
return true;
}
bool SHAPE_POLY_SET::IsPolygonSelfIntersecting( int aPolygonIndex ) const
{
CONST_SEGMENT_ITERATOR iterator = CIterateSegmentsWithHoles( aPolygonIndex );
CONST_SEGMENT_ITERATOR innerIterator;
for( iterator = CIterateSegmentsWithHoles( aPolygonIndex ); iterator; iterator++ )
{
SEG firstSegment = *iterator;
// Iterate through all remaining segments.
innerIterator = iterator;
// Start in the next segment, we don't want to check collision between a segment and itself
for( innerIterator++; innerIterator; innerIterator++ )
{
SEG secondSegment = *innerIterator;
// Check whether the two segments built collide, only when they are not adjacent.
if( !iterator.IsAdjacent( innerIterator ) && firstSegment.Collide( secondSegment, 0 ) )
return true;
}
}
return false;
}
bool SHAPE_POLY_SET::IsSelfIntersecting() const
{
for( unsigned int polygon = 0; polygon < m_polys.size(); polygon++ )
{
if( IsPolygonSelfIntersecting( polygon ) )
return true;
}
return false;
}
int SHAPE_POLY_SET::AddOutline( const SHAPE_LINE_CHAIN& aOutline )
{
assert( aOutline.IsClosed() );
POLYGON poly;
poly.push_back( aOutline );
m_polys.push_back( poly );
return m_polys.size() - 1;
}
int SHAPE_POLY_SET::AddHole( const SHAPE_LINE_CHAIN& aHole, int aOutline )
{
assert( m_polys.size() );
if( aOutline < 0 )
aOutline += m_polys.size();
POLYGON& poly = m_polys[aOutline];
assert( poly.size() );
poly.push_back( aHole );
return poly.size() - 1;
}
2017-06-15 09:28:36 +00:00
void SHAPE_POLY_SET::booleanOp( ClipperLib::ClipType aType, const SHAPE_POLY_SET& aOtherShape,
POLYGON_MODE aFastMode )
{
booleanOp( aType, *this, aOtherShape, aFastMode );
}
void SHAPE_POLY_SET::booleanOp( ClipperLib::ClipType aType,
const SHAPE_POLY_SET& aShape,
const SHAPE_POLY_SET& aOtherShape,
POLYGON_MODE aFastMode )
{
Clipper c;
c.StrictlySimple( aFastMode == PM_STRICTLY_SIMPLE );
for( auto poly : aShape.m_polys )
{
for( size_t i = 0 ; i < poly.size(); i++ )
c.AddPath( poly[i].convertToClipper( i == 0 ), ptSubject, true );
}
for( auto poly : aOtherShape.m_polys )
{
for( size_t i = 0; i < poly.size(); i++ )
c.AddPath( poly[i].convertToClipper( i == 0 ), ptClip, true );
}
PolyTree solution;
c.Execute( aType, solution, pftNonZero, pftNonZero );
importTree( &solution );
}
void SHAPE_POLY_SET::BooleanAdd( const SHAPE_POLY_SET& b, POLYGON_MODE aFastMode )
{
booleanOp( ctUnion, b, aFastMode );
}
void SHAPE_POLY_SET::BooleanSubtract( const SHAPE_POLY_SET& b, POLYGON_MODE aFastMode )
{
booleanOp( ctDifference, b, aFastMode );
}
void SHAPE_POLY_SET::BooleanIntersection( const SHAPE_POLY_SET& b, POLYGON_MODE aFastMode )
{
booleanOp( ctIntersection, b, aFastMode );
}
void SHAPE_POLY_SET::BooleanAdd( const SHAPE_POLY_SET& a,
const SHAPE_POLY_SET& b,
POLYGON_MODE aFastMode )
{
booleanOp( ctUnion, a, b, aFastMode );
}
void SHAPE_POLY_SET::BooleanSubtract( const SHAPE_POLY_SET& a,
const SHAPE_POLY_SET& b,
POLYGON_MODE aFastMode )
{
booleanOp( ctDifference, a, b, aFastMode );
}
void SHAPE_POLY_SET::BooleanIntersection( const SHAPE_POLY_SET& a,
const SHAPE_POLY_SET& b,
POLYGON_MODE aFastMode )
{
booleanOp( ctIntersection, a, b, aFastMode );
}
void SHAPE_POLY_SET::InflateWithLinkedHoles( int aFactor, int aCircleSegmentsCount,
POLYGON_MODE aFastMode )
{
Simplify( aFastMode );
Inflate( aFactor, aCircleSegmentsCount );
Fracture( aFastMode );
}
void SHAPE_POLY_SET::Inflate( int aAmount, int aCircleSegmentsCount,
CORNER_STRATEGY aCornerStrategy )
{
// A static table to avoid repetitive calculations of the coefficient
// 1.0 - cos( M_PI / aCircleSegmentsCount )
// aCircleSegmentsCount is most of time <= 64 and usually 8, 12, 16, 32
#define SEG_CNT_MAX 64
static double arc_tolerance_factor[SEG_CNT_MAX + 1];
ClipperOffset c;
// N.B. see the Clipper documentation for jtSquare/jtMiter/jtRound. They are poorly named
// and are not what you'd think they are.
// http://www.angusj.com/delphi/clipper/documentation/Docs/Units/ClipperLib/Types/JoinType.htm
JoinType joinType = aCornerStrategy == ROUND_ALL_CORNERS ? jtRound : jtMiter;
double miterLimit = aCornerStrategy == ALLOW_ACUTE_CORNERS ? 10 : 1.5;
JoinType miterFallback = aCornerStrategy == ROUND_ACUTE_CORNERS ? jtRound : jtSquare;
for( const POLYGON& poly : m_polys )
{
for( size_t i = 0; i < poly.size(); i++ )
c.AddPath( poly[i].convertToClipper( i == 0 ), joinType, etClosedPolygon );
}
PolyTree solution;
// Calculate the arc tolerance (arc error) from the seg count by circle. The seg count is
// nn = M_PI / acos(1.0 - c.ArcTolerance / abs(aAmount))
// http://www.angusj.com/delphi/clipper/documentation/Docs/Units/ClipperLib/Classes/ClipperOffset/Properties/ArcTolerance.htm
if( aCircleSegmentsCount < 6 ) // avoid incorrect aCircleSegmentsCount values
aCircleSegmentsCount = 6;
double coeff;
if( aCircleSegmentsCount > SEG_CNT_MAX || arc_tolerance_factor[aCircleSegmentsCount] == 0 )
{
coeff = 1.0 - cos( M_PI / aCircleSegmentsCount );
if( aCircleSegmentsCount <= SEG_CNT_MAX )
arc_tolerance_factor[aCircleSegmentsCount] = coeff;
}
else
coeff = arc_tolerance_factor[aCircleSegmentsCount];
c.ArcTolerance = std::abs( aAmount ) * coeff;
c.MiterLimit = miterLimit;
c.MiterFallback = miterFallback;
c.Execute( solution, aAmount );
importTree( &solution );
}
void SHAPE_POLY_SET::importTree( PolyTree* tree )
{
m_polys.clear();
for( PolyNode* n = tree->GetFirst(); n; n = n->GetNext() )
{
if( !n->IsHole() )
{
POLYGON paths;
paths.reserve( n->Childs.size() + 1 );
paths.push_back( n->Contour );
for( unsigned int i = 0; i < n->Childs.size(); i++ )
paths.push_back( n->Childs[i]->Contour );
m_polys.push_back( paths );
}
}
}
struct FractureEdge
{
FractureEdge( int y = 0 ) :
m_connected( false ),
m_next( NULL )
{
m_p1.x = m_p2.y = y;
}
FractureEdge( bool connected, const VECTOR2I& p1, const VECTOR2I& p2 ) :
m_connected( connected ),
m_p1( p1 ),
m_p2( p2 ),
m_next( NULL )
{
}
bool matches( int y ) const
{
return ( y >= m_p1.y || y >= m_p2.y ) && ( y <= m_p1.y || y <= m_p2.y );
}
bool m_connected;
VECTOR2I m_p1, m_p2;
FractureEdge* m_next;
};
typedef std::vector<FractureEdge*> FractureEdgeSet;
static int processEdge( FractureEdgeSet& edges, FractureEdge* edge )
{
int x = edge->m_p1.x;
int y = edge->m_p1.y;
int min_dist = std::numeric_limits<int>::max();
int x_nearest = 0;
FractureEdge* e_nearest = NULL;
for( FractureEdgeSet::iterator i = edges.begin(); i != edges.end(); ++i )
{
if( !(*i)->matches( y ) )
continue;
int x_intersect;
if( (*i)->m_p1.y == (*i)->m_p2.y ) // horizontal edge
x_intersect = std::max( (*i)->m_p1.x, (*i)->m_p2.x );
else
x_intersect = (*i)->m_p1.x + rescale( (*i)->m_p2.x - (*i)->m_p1.x, y - (*i)->m_p1.y,
(*i)->m_p2.y - (*i)->m_p1.y );
int dist = ( x - x_intersect );
2015-07-30 11:49:22 +00:00
if( dist >= 0 && dist < min_dist && (*i)->m_connected )
{
min_dist = dist;
x_nearest = x_intersect;
e_nearest = (*i);
}
}
if( e_nearest && e_nearest->m_connected )
{
int count = 0;
FractureEdge* lead1 =
new FractureEdge( true, VECTOR2I( x_nearest, y ), VECTOR2I( x, y ) );
FractureEdge* lead2 =
new FractureEdge( true, VECTOR2I( x, y ), VECTOR2I( x_nearest, y ) );
FractureEdge* split_2 =
new FractureEdge( true, VECTOR2I( x_nearest, y ), e_nearest->m_p2 );
edges.push_back( split_2 );
edges.push_back( lead1 );
edges.push_back( lead2 );
FractureEdge* link = e_nearest->m_next;
e_nearest->m_p2 = VECTOR2I( x_nearest, y );
e_nearest->m_next = lead1;
lead1->m_next = edge;
FractureEdge* last;
for( last = edge; last->m_next != edge; last = last->m_next )
{
last->m_connected = true;
count++;
}
last->m_connected = true;
last->m_next = lead2;
lead2->m_next = split_2;
split_2->m_next = link;
return count + 1;
}
return 0;
}
void SHAPE_POLY_SET::fractureSingle( POLYGON& paths )
{
FractureEdgeSet edges;
FractureEdgeSet border_edges;
FractureEdge* root = NULL;
bool first = true;
if( paths.size() == 1 )
return;
int num_unconnected = 0;
for( const SHAPE_LINE_CHAIN& path : paths )
{
const std::vector<VECTOR2I>& points = path.CPoints();
int pointCount = points.size();
FractureEdge* prev = NULL, * first_edge = NULL;
int x_min = std::numeric_limits<int>::max();
for( const VECTOR2I& p : points )
{
if( p.x < x_min )
x_min = p.x;
}
for( int i = 0; i < pointCount; i++ )
{
// Do not use path.CPoint() here; open-coding it using the local variables "points"
// and "pointCount" gives a non-trivial performance boost to zone fill times.
FractureEdge* fe = new FractureEdge( first, points[ i ],
points[ i+1 == pointCount ? 0 : i+1 ] );
if( !root )
root = fe;
if( !first_edge )
first_edge = fe;
if( prev )
prev->m_next = fe;
if( i == pointCount - 1 )
fe->m_next = first_edge;
prev = fe;
edges.push_back( fe );
if( !first )
{
if( fe->m_p1.x == x_min )
border_edges.push_back( fe );
}
if( !fe->m_connected )
num_unconnected++;
}
first = false; // first path is always the outline
}
// keep connecting holes to the main outline, until there's no holes left...
while( num_unconnected > 0 )
{
int x_min = std::numeric_limits<int>::max();
2015-07-07 16:37:03 +00:00
FractureEdge* smallestX = NULL;
// find the left-most hole edge and merge with the outline
for( FractureEdge* border_edge : border_edges )
{
int xt = border_edge->m_p1.x;
2015-07-07 16:37:03 +00:00
if( ( xt < x_min ) && !border_edge->m_connected )
{
x_min = xt;
smallestX = border_edge;
}
}
num_unconnected -= processEdge( edges, smallestX );
}
paths.clear();
SHAPE_LINE_CHAIN newPath;
newPath.SetClosed( true );
FractureEdge* e;
for( e = root; e->m_next != root; e = e->m_next )
newPath.Append( e->m_p1 );
2015-06-19 17:39:33 +00:00
newPath.Append( e->m_p1 );
for( FractureEdge* edge : edges )
delete edge;
paths.push_back( std::move( newPath ) );
}
void SHAPE_POLY_SET::Fracture( POLYGON_MODE aFastMode )
{
Simplify( aFastMode ); // remove overlapping holes/degeneracy
for( POLYGON& paths : m_polys )
{
fractureSingle( paths );
}
}
void SHAPE_POLY_SET::unfractureSingle( SHAPE_POLY_SET::POLYGON& aPoly )
{
assert( aPoly.size() == 1 );
struct EDGE
{
int m_index = 0;
SHAPE_LINE_CHAIN* m_poly = nullptr;
bool m_duplicate = false;
EDGE( SHAPE_LINE_CHAIN* aPolygon, int aIndex ) :
m_index( aIndex ),
m_poly( aPolygon )
{}
bool compareSegs( const SEG& s1, const SEG& s2 ) const
{
return (s1.A == s2.B && s1.B == s2.A);
}
bool operator==( const EDGE& aOther ) const
{
return compareSegs( m_poly->CSegment( m_index ),
aOther.m_poly->CSegment( aOther.m_index ) );
}
bool operator!=( const EDGE& aOther ) const
{
return !compareSegs( m_poly->CSegment( m_index ),
aOther.m_poly->CSegment( aOther.m_index ) );
}
struct HASH
{
std::size_t operator()( const EDGE& aEdge ) const
{
const auto& a = aEdge.m_poly->CSegment( aEdge.m_index );
return (std::size_t) ( a.A.x + a.B.x + a.A.y + a.B.y );
}
};
};
struct EDGE_LIST_ENTRY
{
int index;
EDGE_LIST_ENTRY* next;
};
std::unordered_set<EDGE, EDGE::HASH> uniqueEdges;
auto lc = aPoly[0];
lc.Simplify();
auto edgeList = std::make_unique<EDGE_LIST_ENTRY []>( lc.SegmentCount() );
for( int i = 0; i < lc.SegmentCount(); i++ )
{
edgeList[i].index = i;
edgeList[i].next = &edgeList[ (i != lc.SegmentCount() - 1) ? i + 1 : 0 ];
}
std::unordered_set<EDGE_LIST_ENTRY*> queue;
for( int i = 0; i < lc.SegmentCount(); i++ )
{
EDGE e( &lc, i );
uniqueEdges.insert( e );
}
for( int i = 0; i < lc.SegmentCount(); i++ )
{
EDGE e( &lc, i );
auto it = uniqueEdges.find( e );
if( it != uniqueEdges.end() && it->m_index != i )
{
int e1 = it->m_index;
int e2 = i;
if( e1 > e2 )
std::swap( e1, e2 );
int e1_prev = e1 - 1;
if( e1_prev < 0 )
e1_prev = lc.SegmentCount() - 1;
int e2_prev = e2 - 1;
if( e2_prev < 0 )
e2_prev = lc.SegmentCount() - 1;
int e1_next = e1 + 1;
if( e1_next == lc.SegmentCount() )
e1_next = 0;
int e2_next = e2 + 1;
if( e2_next == lc.SegmentCount() )
e2_next = 0;
edgeList[e1_prev].next = &edgeList[ e2_next ];
edgeList[e2_prev].next = &edgeList[ e1_next ];
edgeList[i].next = nullptr;
edgeList[it->m_index].next = nullptr;
}
}
for( int i = 0; i < lc.SegmentCount(); i++ )
{
if( edgeList[i].next )
queue.insert( &edgeList[i] );
}
auto edgeBuf = std::make_unique<EDGE_LIST_ENTRY* []>( lc.SegmentCount() );
int n = 0;
int outline = -1;
POLYGON result;
while( queue.size() )
{
auto e_first = (*queue.begin() );
auto e = e_first;
int cnt = 0;
do {
edgeBuf[cnt++] = e;
e = e->next;
} while( e && e != e_first );
SHAPE_LINE_CHAIN outl;
for( int i = 0; i < cnt; i++ )
{
auto p = lc.CPoint( edgeBuf[i]->index );
outl.Append( p );
queue.erase( edgeBuf[i] );
}
outl.SetClosed( true );
bool cw = outl.Area() > 0.0;
if( cw )
outline = n;
result.push_back( outl );
n++;
}
if( outline > 0 )
std::swap( result[0], result[outline] );
aPoly = result;
}
bool SHAPE_POLY_SET::HasHoles() const
{
// Iterate through all the polygons on the set
for( const POLYGON& paths : m_polys )
{
// If any of them has more than one contour, it is a hole.
if( paths.size() > 1 )
return true;
}
// Return false if and only if every polygon has just one outline, without holes.
return false;
}
void SHAPE_POLY_SET::Unfracture( POLYGON_MODE aFastMode )
{
for( POLYGON& path : m_polys )
{
unfractureSingle( path );
}
Simplify( aFastMode ); // remove overlapping holes/degeneracy
}
void SHAPE_POLY_SET::Simplify( POLYGON_MODE aFastMode )
{
SHAPE_POLY_SET empty;
booleanOp( ctUnion, empty, aFastMode );
}
int SHAPE_POLY_SET::NormalizeAreaOutlines()
{
// We are expecting only one main outline, but this main outline can have holes
// if holes: combine holes and remove them from the main outline.
// Note also we are using SHAPE_POLY_SET::PM_STRICTLY_SIMPLE in polygon
// calculations, but it is not mandatory. It is used mainly
// because there is usually only very few vertices in area outlines
SHAPE_POLY_SET::POLYGON& outline = Polygon( 0 );
SHAPE_POLY_SET holesBuffer;
// Move holes stored in outline to holesBuffer:
// The first SHAPE_LINE_CHAIN is the main outline, others are holes
while( outline.size() > 1 )
{
holesBuffer.AddOutline( outline.back() );
outline.pop_back();
}
Simplify( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
// If any hole, substract it to main outline
if( holesBuffer.OutlineCount() )
{
holesBuffer.Simplify( SHAPE_POLY_SET::PM_FAST );
BooleanSubtract( holesBuffer, SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
}
RemoveNullSegments();
return OutlineCount();
}
const std::string SHAPE_POLY_SET::Format() const
{
std::stringstream ss;
ss << "polyset " << m_polys.size() << "\n";
for( unsigned i = 0; i < m_polys.size(); i++ )
{
ss << "poly " << m_polys[i].size() << "\n";
for( unsigned j = 0; j < m_polys[i].size(); j++ )
{
ss << m_polys[i][j].PointCount() << "\n";
for( int v = 0; v < m_polys[i][j].PointCount(); v++ )
ss << m_polys[i][j].CPoint( v ).x << " " << m_polys[i][j].CPoint( v ).y << "\n";
}
ss << "\n";
}
return ss.str();
}
bool SHAPE_POLY_SET::Parse( std::stringstream& aStream )
{
std::string tmp;
aStream >> tmp;
if( tmp != "polyset" )
return false;
aStream >> tmp;
2015-06-15 14:01:43 +00:00
int n_polys = atoi( tmp.c_str() );
if( n_polys < 0 )
return false;
2015-06-15 14:01:43 +00:00
for( int i = 0; i < n_polys; i++ )
{
POLYGON paths;
aStream >> tmp;
if( tmp != "poly" )
return false;
aStream >> tmp;
2015-06-15 14:01:43 +00:00
int n_outlines = atoi( tmp.c_str() );
if( n_outlines < 0 )
return false;
2015-06-15 14:01:43 +00:00
for( int j = 0; j < n_outlines; j++ )
{
SHAPE_LINE_CHAIN outline;
outline.SetClosed( true );
aStream >> tmp;
2015-06-15 14:01:43 +00:00
int n_vertices = atoi( tmp.c_str() );
2015-06-15 14:01:43 +00:00
for( int v = 0; v < n_vertices; v++ )
{
VECTOR2I p;
aStream >> tmp; p.x = atoi( tmp.c_str() );
aStream >> tmp; p.y = atoi( tmp.c_str() );
outline.Append( p );
}
paths.push_back( outline );
}
m_polys.push_back( paths );
}
return true;
}
const BOX2I SHAPE_POLY_SET::BBox( int aClearance ) const
{
BOX2I bb;
for( unsigned i = 0; i < m_polys.size(); i++ )
{
if( i == 0 )
bb = m_polys[i][0].BBox();
else
bb.Merge( m_polys[i][0].BBox() );
}
bb.Inflate( aClearance );
return bb;
}
bool SHAPE_POLY_SET::PointOnEdge( const VECTOR2I& aP ) const
{
// Iterate through all the polygons in the set
for( const POLYGON& polygon : m_polys )
{
// Iterate through all the line chains in the polygon
for( const SHAPE_LINE_CHAIN& lineChain : polygon )
{
if( lineChain.PointOnEdge( aP ) )
return true;
}
}
return false;
}
2018-04-19 23:48:20 +00:00
bool SHAPE_POLY_SET::Collide( const SEG& aSeg, int aClearance ) const
{
SHAPE_POLY_SET polySet = SHAPE_POLY_SET( *this );
// Inflate the polygon if necessary.
if( aClearance > 0 )
{
// fixme: the number of arc segments should not be hardcoded
polySet.Inflate( aClearance, 8 );
}
// We are going to check to see if the segment crosses an external
// boundary. However, if the full segment is inside the polyset, this
// will not be true. So we first test to see if one of the points is
// inside. If true, then we collide
if( polySet.Contains( aSeg.A ) )
2018-04-19 23:48:20 +00:00
return true;
for( SEGMENT_ITERATOR it = ( (SHAPE_POLY_SET*) this )->IterateSegmentsWithHoles(); it; it++ )
2018-04-19 23:48:20 +00:00
{
SEG polygonEdge = *it;
2018-04-19 23:48:20 +00:00
if( polygonEdge.Intersect( aSeg, true ) )
2018-04-19 23:48:20 +00:00
return true;
}
return false;
}
bool SHAPE_POLY_SET::Collide( const VECTOR2I& aP, int aClearance ) const
{
SHAPE_POLY_SET polySet = SHAPE_POLY_SET( *this );
// Inflate the polygon if necessary.
if( aClearance > 0 )
{
// fixme: the number of arc segments should not be hardcoded
polySet.Inflate( aClearance, 8 );
}
// There is a collision if and only if the point is inside of the polygon.
return polySet.Contains( aP );
}
void SHAPE_POLY_SET::RemoveAllContours()
{
m_polys.clear();
}
void SHAPE_POLY_SET::RemoveContour( int aContourIdx, int aPolygonIdx )
{
// Default polygon is the last one
if( aPolygonIdx < 0 )
aPolygonIdx += m_polys.size();
m_polys[aPolygonIdx].erase( m_polys[aPolygonIdx].begin() + aContourIdx );
}
int SHAPE_POLY_SET::RemoveNullSegments()
{
int removed = 0;
ITERATOR iterator = IterateWithHoles();
VECTOR2I contourStart = *iterator;
VECTOR2I segmentStart, segmentEnd;
VERTEX_INDEX indexStart;
while( iterator )
{
// Obtain first point and its index
segmentStart = *iterator;
indexStart = iterator.GetIndex();
// Obtain last point
if( iterator.IsEndContour() )
{
segmentEnd = contourStart;
// Advance
iterator++;
if( iterator )
contourStart = *iterator;
}
else
{
// Advance
iterator++;
if( iterator )
segmentEnd = *iterator;
}
// Remove segment start if both points are equal
if( segmentStart == segmentEnd )
{
RemoveVertex( indexStart );
removed++;
// Advance the iterator one position, as there is one vertex less.
if( iterator )
iterator++;
}
}
return removed;
}
void SHAPE_POLY_SET::DeletePolygon( int aIdx )
{
m_polys.erase( m_polys.begin() + aIdx );
}
void SHAPE_POLY_SET::Append( const SHAPE_POLY_SET& aSet )
{
m_polys.insert( m_polys.end(), aSet.m_polys.begin(), aSet.m_polys.end() );
}
void SHAPE_POLY_SET::Append( const VECTOR2I& aP, int aOutline, int aHole )
{
Append( aP.x, aP.y, aOutline, aHole );
}
bool SHAPE_POLY_SET::CollideVertex( const VECTOR2I& aPoint,
SHAPE_POLY_SET::VERTEX_INDEX& aClosestVertex, int aClearance )
{
// Shows whether there was a collision
bool collision = false;
// Difference vector between each vertex and aPoint.
VECTOR2D delta;
double distance, clearance;
// Convert clearance to double for precission when comparing distances
clearance = aClearance;
for( ITERATOR iterator = IterateWithHoles(); iterator; iterator++ )
{
// Get the difference vector between current vertex and aPoint
delta = *iterator - aPoint;
// Compute distance
distance = delta.EuclideanNorm();
// Check for collisions
if( distance <= clearance )
{
collision = true;
// Update aClearance to look for closer vertices
clearance = distance;
// Store the indices that identify the vertex
aClosestVertex = iterator.GetIndex();
}
}
return collision;
}
bool SHAPE_POLY_SET::CollideEdge( const VECTOR2I& aPoint,
SHAPE_POLY_SET::VERTEX_INDEX& aClosestVertex, int aClearance )
{
// Shows whether there was a collision
bool collision = false;
SEGMENT_ITERATOR iterator;
for( iterator = IterateSegmentsWithHoles(); iterator; iterator++ )
{
SEG currentSegment = *iterator;
int distance = currentSegment.Distance( aPoint );
// Check for collisions
if( distance <= aClearance )
{
collision = true;
// Update aClearance to look for closer edges
aClearance = distance;
// Store the indices that identify the vertex
aClosestVertex = iterator.GetIndex();
}
}
return collision;
}
void SHAPE_POLY_SET::BuildBBoxCaches()
{
for( int polygonIdx = 0; polygonIdx < OutlineCount(); polygonIdx++ )
{
Outline( polygonIdx ).GenerateBBoxCache();
for( int holeIdx = 0; holeIdx < HoleCount( polygonIdx ); holeIdx++ )
Hole( polygonIdx, holeIdx ).GenerateBBoxCache();
}
}
bool SHAPE_POLY_SET::Contains( const VECTOR2I& aP, int aSubpolyIndex, int aAccuracy,
bool aUseBBoxCaches ) const
{
if( m_polys.empty() )
return false;
// If there is a polygon specified, check the condition against that polygon
if( aSubpolyIndex >= 0 )
return containsSingle( aP, aSubpolyIndex, aAccuracy, aUseBBoxCaches );
// In any other case, check it against all polygons in the set
for( int polygonIdx = 0; polygonIdx < OutlineCount(); polygonIdx++ )
{
if( containsSingle( aP, polygonIdx, aAccuracy, aUseBBoxCaches ) )
return true;
}
return false;
}
void SHAPE_POLY_SET::RemoveVertex( int aGlobalIndex )
{
VERTEX_INDEX index;
// Assure the to be removed vertex exists, abort otherwise
if( GetRelativeIndices( aGlobalIndex, &index ) )
RemoveVertex( index );
else
throw( std::out_of_range( "aGlobalIndex-th vertex does not exist" ) );
}
void SHAPE_POLY_SET::RemoveVertex( VERTEX_INDEX aIndex )
{
m_polys[aIndex.m_polygon][aIndex.m_contour].Remove( aIndex.m_vertex );
}
bool SHAPE_POLY_SET::containsSingle( const VECTOR2I& aP, int aSubpolyIndex, int aAccuracy,
bool aUseBBoxCaches ) const
{
// Check that the point is inside the outline
if( m_polys[aSubpolyIndex][0].PointInside( aP, aAccuracy ) )
{
// Check that the point is not in any of the holes
for( int holeIdx = 0; holeIdx < HoleCount( aSubpolyIndex ); holeIdx++ )
{
const SHAPE_LINE_CHAIN& hole = CHole( aSubpolyIndex, holeIdx );
// If the point is inside a hole it is outside of the polygon. Do not use aAccuracy
// here as it's meaning would be inverted.
if( hole.PointInside( aP, 1, aUseBBoxCaches ) )
return false;
}
return true;
}
return false;
}
void SHAPE_POLY_SET::Move( const VECTOR2I& aVector )
{
for( POLYGON& poly : m_polys )
{
for( SHAPE_LINE_CHAIN& path : poly )
path.Move( aVector );
}
}
void SHAPE_POLY_SET::Rotate( double aAngle, const VECTOR2I& aCenter )
{
for( POLYGON& poly : m_polys )
{
for( SHAPE_LINE_CHAIN& path : poly )
path.Rotate( aAngle, aCenter );
}
}
int SHAPE_POLY_SET::TotalVertices() const
{
int c = 0;
for( const POLYGON& poly : m_polys )
{
for( const SHAPE_LINE_CHAIN& path : poly )
c += path.PointCount();
}
return c;
}
SHAPE_POLY_SET::POLYGON SHAPE_POLY_SET::ChamferPolygon( unsigned int aDistance, int aIndex,
std::set<VECTOR2I>* aPreserveCorners )
{
return chamferFilletPolygon( CHAMFERED, aDistance, aIndex, 0, aPreserveCorners );
}
SHAPE_POLY_SET::POLYGON SHAPE_POLY_SET::FilletPolygon( unsigned int aRadius, int aErrorMax,
int aIndex,
std::set<VECTOR2I>* aPreserveCorners )
{
return chamferFilletPolygon( FILLETED, aRadius, aIndex, aErrorMax, aPreserveCorners );
}
int SHAPE_POLY_SET::DistanceToPolygon( VECTOR2I aPoint, int aPolygonIndex )
{
// We calculate the min dist between the segment and each outline segment. However, if the
// segment to test is inside the outline, and does not cross any edge, it can be seen outside
// the polygon. Therefore test if a segment end is inside (testing only one end is enough).
// Use an accuracy of "1" to say that we don't care if it's exactly on the edge or not.
if( containsSingle( aPoint, aPolygonIndex, 1 ) )
return 0;
SEGMENT_ITERATOR iterator = IterateSegmentsWithHoles( aPolygonIndex );
SEG polygonEdge = *iterator;
int minDistance = polygonEdge.Distance( aPoint );
for( iterator++; iterator && minDistance > 0; iterator++ )
{
polygonEdge = *iterator;
int currentDistance = polygonEdge.Distance( aPoint );
if( currentDistance < minDistance )
minDistance = currentDistance;
}
return minDistance;
}
int SHAPE_POLY_SET::DistanceToPolygon( const SEG& aSegment, int aPolygonIndex, int aSegmentWidth )
{
// We calculate the min dist between the segment and each outline segment. However, if the
// segment to test is inside the outline, and does not cross any edge, it can be seen outside
// the polygon. Therefore test if a segment end is inside (testing only one end is enough).
// Use an accuracy of "1" to say that we don't care if it's exactly on the edge or not.
if( containsSingle( aSegment.A, aPolygonIndex, 1 ) )
return 0;
SEGMENT_ITERATOR iterator = IterateSegmentsWithHoles( aPolygonIndex );
SEG polygonEdge = *iterator;
int minDistance = polygonEdge.Distance( aSegment );
for( iterator++; iterator && minDistance > 0; iterator++ )
{
polygonEdge = *iterator;
int currentDistance = polygonEdge.Distance( aSegment );
if( currentDistance < minDistance )
minDistance = currentDistance;
}
// Take into account the width of the segment
if( aSegmentWidth > 0 )
minDistance -= aSegmentWidth / 2;
// Return the maximum of minDistance and zero
return minDistance < 0 ? 0 : minDistance;
}
int SHAPE_POLY_SET::Distance( VECTOR2I aPoint )
{
int currentDistance;
int minDistance = DistanceToPolygon( aPoint, 0 );
// Iterate through all the polygons and get the minimum distance.
for( unsigned int polygonIdx = 1; polygonIdx < m_polys.size(); polygonIdx++ )
{
currentDistance = DistanceToPolygon( aPoint, polygonIdx );
if( currentDistance < minDistance )
minDistance = currentDistance;
}
return minDistance;
}
int SHAPE_POLY_SET::Distance( const SEG& aSegment, int aSegmentWidth )
{
int currentDistance;
int minDistance = DistanceToPolygon( aSegment, 0, aSegmentWidth );
// Iterate through all the polygons and get the minimum distance.
for( unsigned int polygonIdx = 1; polygonIdx < m_polys.size(); polygonIdx++ )
{
currentDistance = DistanceToPolygon( aSegment, polygonIdx, aSegmentWidth );
if( currentDistance < minDistance )
minDistance = currentDistance;
}
return minDistance;
}
bool SHAPE_POLY_SET::IsVertexInHole( int aGlobalIdx )
{
VERTEX_INDEX index;
// Get the polygon and contour where the vertex is. If the vertex does not exist, return false
if( !GetRelativeIndices( aGlobalIdx, &index ) )
return false;
// The contour is a hole if its index is greater than zero
return index.m_contour > 0;
}
SHAPE_POLY_SET SHAPE_POLY_SET::Chamfer( int aDistance, std::set<VECTOR2I>* aPreserveCorners )
{
SHAPE_POLY_SET chamfered;
for( unsigned int idx = 0; idx < m_polys.size(); idx++ )
chamfered.m_polys.push_back( ChamferPolygon( aDistance, idx, aPreserveCorners ) );
return chamfered;
}
SHAPE_POLY_SET SHAPE_POLY_SET::Fillet( int aRadius, int aErrorMax,
std::set<VECTOR2I>* aPreserveCorners )
{
SHAPE_POLY_SET filleted;
for( size_t idx = 0; idx < m_polys.size(); idx++ )
filleted.m_polys.push_back( FilletPolygon( aRadius, aErrorMax, idx, aPreserveCorners ) );
return filleted;
}
SHAPE_POLY_SET::POLYGON SHAPE_POLY_SET::chamferFilletPolygon( CORNER_MODE aMode,
unsigned int aDistance, int aIndex, int aErrorMax,
std::set<VECTOR2I>* aPreserveCorners )
{
// Null segments create serious issues in calculations. Remove them:
RemoveNullSegments();
SHAPE_POLY_SET::POLYGON currentPoly = Polygon( aIndex );
SHAPE_POLY_SET::POLYGON newPoly;
// If the chamfering distance is zero, then the polygon remain intact.
if( aDistance == 0 )
{
return currentPoly;
}
// Iterate through all the contours (outline and holes) of the polygon.
for( SHAPE_LINE_CHAIN& currContour : currentPoly )
{
// Generate a new contour in the new polygon
SHAPE_LINE_CHAIN newContour;
// Iterate through the vertices of the contour
for( int currVertex = 0; currVertex < currContour.PointCount(); currVertex++ )
{
// Current vertex
int x1 = currContour.Point( currVertex ).x;
int y1 = currContour.Point( currVertex ).y;
if( aPreserveCorners && aPreserveCorners->count( VECTOR2I( x1, y1 ) ) > 0 )
{
newContour.Append( x1, y1 );
continue;
}
// Indices for previous and next vertices.
int prevVertex;
int nextVertex;
// Previous and next vertices indices computation. Necessary to manage the edge cases.
// Previous vertex is the last one if the current vertex is the first one
prevVertex = currVertex == 0 ? currContour.PointCount() - 1 : currVertex - 1;
// next vertex is the first one if the current vertex is the last one.
nextVertex = currVertex == currContour.PointCount() - 1 ? 0 : currVertex + 1;
// Previous vertex computation
double xa = currContour.Point( prevVertex ).x - x1;
double ya = currContour.Point( prevVertex ).y - y1;
// Next vertex computation
double xb = currContour.Point( nextVertex ).x - x1;
double yb = currContour.Point( nextVertex ).y - y1;
// Compute the new distances
double lena = hypot( xa, ya );
double lenb = hypot( xb, yb );
// Make the final computations depending on the mode selected, chamfered or filleted.
if( aMode == CORNER_MODE::CHAMFERED )
{
double distance = aDistance;
// Chamfer one half of an edge at most
if( 0.5 * lena < distance )
distance = 0.5 * lena;
if( 0.5 * lenb < distance )
distance = 0.5 * lenb;
int nx1 = round_nearest( distance * xa / lena );
int ny1 = round_nearest( distance * ya / lena );
newContour.Append( x1 + nx1, y1 + ny1 );
int nx2 = round_nearest( distance * xb / lenb );
int ny2 = round_nearest( distance * yb / lenb );
newContour.Append( x1 + nx2, y1 + ny2 );
}
else // CORNER_MODE = FILLETED
{
double cosine = ( xa * xb + ya * yb ) / ( lena * lenb );
double radius = aDistance;
double denom = sqrt( 2.0 / ( 1 + cosine ) - 1 );
// Do nothing in case of parallel edges
if( std::isinf( denom ) )
continue;
// Limit rounding distance to one half of an edge
if( 0.5 * lena * denom < radius )
radius = 0.5 * lena * denom;
if( 0.5 * lenb * denom < radius )
radius = 0.5 * lenb * denom;
// Calculate fillet arc absolute center point (xc, yx)
double k = radius / sqrt( .5 * ( 1 - cosine ) );
double lenab = sqrt( ( xa / lena + xb / lenb ) * ( xa / lena + xb / lenb ) +
( ya / lena + yb / lenb ) * ( ya / lena + yb / lenb ) );
double xc = x1 + k * ( xa / lena + xb / lenb ) / lenab;
double yc = y1 + k * ( ya / lena + yb / lenb ) / lenab;
// Calculate arc start and end vectors
k = radius / sqrt( 2 / ( 1 + cosine ) - 1 );
double xs = x1 + k * xa / lena - xc;
double ys = y1 + k * ya / lena - yc;
double xe = x1 + k * xb / lenb - xc;
double ye = y1 + k * yb / lenb - yc;
// Cosine of arc angle
double argument = ( xs * xe + ys * ye ) / ( radius * radius );
// Make sure the argument is in [-1,1], interval in which the acos function is
// defined
if( argument < -1 )
argument = -1;
else if( argument > 1 )
argument = 1;
double arcAngle = acos( argument );
double arcAngleDegrees = arcAngle * 180.0 / M_PI;
int segments = GetArcToSegmentCount( radius, aErrorMax, arcAngleDegrees );
double deltaAngle = arcAngle / segments;
double startAngle = atan2( -ys, xs );
// Flip arc for inner corners
if( xa * yb - ya * xb <= 0 )
deltaAngle *= -1;
double nx = xc + xs;
double ny = yc + ys;
newContour.Append( round_nearest( nx ), round_nearest( ny ) );
// Store the previous added corner to make a sanity check
int prevX = round_nearest( nx );
int prevY = round_nearest( ny );
for( int j = 0; j < segments; j++ )
{
2018-02-19 09:03:56 +00:00
nx = xc + cos( startAngle + ( j + 1 ) * deltaAngle ) * radius;
ny = yc - sin( startAngle + ( j + 1 ) * deltaAngle ) * radius;
// Sanity check: the rounding can produce repeated corners; do not add them.
if( round_nearest( nx ) != prevX || round_nearest( ny ) != prevY )
{
newContour.Append( round_nearest( nx ), round_nearest( ny ) );
prevX = round_nearest( nx );
prevY = round_nearest( ny );
}
}
}
}
// Close the current contour and add it the new polygon
newContour.SetClosed( true );
newPoly.push_back( newContour );
}
return newPoly;
}
2018-02-19 09:03:56 +00:00
SHAPE_POLY_SET &SHAPE_POLY_SET::operator=( const SHAPE_POLY_SET& aOther )
{
static_cast<SHAPE&>(*this) = aOther;
m_polys = aOther.m_polys;
// reset poly cache:
m_hash = MD5_HASH{};
m_triangulationValid = false;
m_triangulatedPolys.clear();
return *this;
}
MD5_HASH SHAPE_POLY_SET::GetHash() const
{
if( !m_hash.IsValid() )
return checksum();
return m_hash;
}
bool SHAPE_POLY_SET::IsTriangulationUpToDate() const
{
if( !m_triangulationValid )
return false;
if( !m_hash.IsValid() )
return false;
auto hash = checksum();
return hash == m_hash;
}
void SHAPE_POLY_SET::CacheTriangulation()
{
bool recalculate = !m_hash.IsValid();
MD5_HASH hash;
if( !m_triangulationValid )
recalculate = true;
if( !recalculate )
{
hash = checksum();
if( m_hash != hash )
{
m_hash = hash;
recalculate = true;
}
}
if( !recalculate )
return;
SHAPE_POLY_SET tmpSet = *this;
if( tmpSet.HasHoles() )
tmpSet.Fracture( PM_FAST );
m_triangulatedPolys.clear();
m_triangulationValid = true;
while( tmpSet.OutlineCount() > 0 )
{
m_triangulatedPolys.push_back( std::make_unique<TRIANGULATED_POLYGON>() );
PolygonTriangulation tess( *m_triangulatedPolys.back() );
// If the tesselation fails, we re-fracture the polygon, which will
// first simplify the system before fracturing and removing the holes
// This may result in multiple, disjoint polygons.
if( !tess.TesselatePolygon( tmpSet.Polygon( 0 ).front() ) )
{
tmpSet.Fracture( PM_FAST );
m_triangulationValid = false;
continue;
}
tmpSet.DeletePolygon( 0 );
m_triangulationValid = true;
}
if( m_triangulationValid )
m_hash = checksum();
}
MD5_HASH SHAPE_POLY_SET::checksum() const
{
MD5_HASH hash;
hash.Hash( m_polys.size() );
for( const auto& outline : m_polys )
{
hash.Hash( outline.size() );
for( const auto& lc : outline )
{
hash.Hash( lc.PointCount() );
for( int i = 0; i < lc.PointCount(); i++ )
{
hash.Hash( lc.CPoint( i ).x );
hash.Hash( lc.CPoint( i ).y );
}
}
}
hash.Finalize();
return hash;
}
2018-02-19 09:03:56 +00:00
bool SHAPE_POLY_SET::HasTouchingHoles() const
{
for( int i = 0; i < OutlineCount(); i++ )
{
if( hasTouchingHoles( CPolygon( i ) ) )
{
return true;
}
}
return false;
}
2018-02-19 09:03:56 +00:00
bool SHAPE_POLY_SET::hasTouchingHoles( const POLYGON& aPoly ) const
{
std::set< long long > ptHashes;
2018-02-19 09:03:56 +00:00
for( const auto& lc : aPoly )
{
for( const VECTOR2I& pt : lc.CPoints() )
{
const long long ptHash = (long long) pt.x << 32 | pt.y;
if( ptHashes.count( ptHash ) > 0 )
{
return true;
}
ptHashes.insert( ptHash );
}
}
return false;
}