kicad/common/eda_shape.cpp

1724 lines
48 KiB
C++
Raw Normal View History

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2018 Jean-Pierre Charras, jp.charras at wanadoo.fr
* Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck <dick@softplc.com>
* Copyright (C) 2011 Wayne Stambaugh <stambaughw@gmail.com>
* Copyright (C) 1992-2022 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <bezier_curves.h>
#include <base_units.h>
#include <convert_basic_shapes_to_polygon.h>
#include <eda_draw_frame.h>
#include <geometry/shape_simple.h>
#include <geometry/shape_segment.h>
#include <geometry/shape_circle.h>
#include <macros.h>
#include <math/util.h> // for KiROUND
#include <eda_shape.h>
#include <plotters/plotter.h>
EDA_SHAPE::EDA_SHAPE( SHAPE_T aType, int aLineWidth, FILL_T aFill ) :
m_endsSwapped( false ),
m_shape( aType ),
m_stroke( aLineWidth, PLOT_DASH_TYPE::DEFAULT, COLOR4D::UNSPECIFIED ),
m_fill( aFill ),
m_fillColor( COLOR4D::UNSPECIFIED ),
2022-09-14 23:45:03 +00:00
m_editState( 0 ),
m_annotationProxy( false )
{
}
EDA_SHAPE::~EDA_SHAPE()
{
}
wxString EDA_SHAPE::ShowShape() const
{
if( IsAnnotationProxy() )
return _( "Number Box" );
switch( m_shape )
{
case SHAPE_T::SEGMENT: return _( "Line" );
case SHAPE_T::RECT: return _( "Rect" );
case SHAPE_T::ARC: return _( "Arc" );
case SHAPE_T::CIRCLE: return _( "Circle" );
case SHAPE_T::BEZIER: return _( "Bezier Curve" );
case SHAPE_T::POLY: return _( "Polygon" );
default: return wxT( "??" );
}
}
wxString EDA_SHAPE::SHAPE_T_asString() const
{
switch( m_shape )
{
2023-01-17 00:07:41 +00:00
case SHAPE_T::SEGMENT: return wxS( "S_SEGMENT" );
case SHAPE_T::RECT: return wxS( "S_RECT" );
case SHAPE_T::ARC: return wxS( "S_ARC" );
case SHAPE_T::CIRCLE: return wxS( "S_CIRCLE" );
case SHAPE_T::POLY: return wxS( "S_POLYGON" );
case SHAPE_T::BEZIER: return wxS( "S_CURVE" );
case SHAPE_T::LAST: return wxS( "!S_LAST!" ); // Synthetic value, but if we come across it then
// we're going to want to know.
}
return wxEmptyString; // Just to quiet GCC.
}
void EDA_SHAPE::setPosition( const VECTOR2I& aPos )
{
move( aPos - getPosition() );
}
VECTOR2I EDA_SHAPE::getPosition() const
{
if( m_shape == SHAPE_T::ARC )
return getCenter();
else if( m_shape == SHAPE_T::POLY )
return m_poly.CVertex( 0 );
else
return m_start;
}
double EDA_SHAPE::GetLength() const
{
double length = 0.0;
switch( m_shape )
{
case SHAPE_T::BEZIER:
for( size_t ii = 1; ii < m_bezierPoints.size(); ++ii )
length += GetLineLength( m_bezierPoints[ ii - 1], m_bezierPoints[ii] );
return length;
case SHAPE_T::SEGMENT:
return GetLineLength( GetStart(), GetEnd() );
case SHAPE_T::POLY:
for( int ii = 0; ii < m_poly.COutline( 0 ).SegmentCount(); ii++ )
length += m_poly.COutline( 0 ).CSegment( ii ).Length();
return length;
case SHAPE_T::ARC:
2022-01-14 15:34:41 +00:00
return GetRadius() * GetArcAngle().AsRadians();
default:
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
return 0.0;
}
}
bool EDA_SHAPE::IsClosed() const
{
switch( m_shape )
{
case SHAPE_T::CIRCLE:
case SHAPE_T::RECT:
return true;
case SHAPE_T::ARC:
case SHAPE_T::SEGMENT:
return false;
case SHAPE_T::POLY:
if( m_poly.IsEmpty() )
return false;
else
return m_poly.Outline( 0 ).IsClosed();
case SHAPE_T::BEZIER:
if( m_bezierPoints.size() < 3 )
return false;
else
return m_bezierPoints[0] == m_bezierPoints[ m_bezierPoints.size() - 1 ];
default:
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
return false;
}
}
void EDA_SHAPE::move( const VECTOR2I& aMoveVector )
{
switch ( m_shape )
{
case SHAPE_T::ARC:
case SHAPE_T::SEGMENT:
case SHAPE_T::RECT:
case SHAPE_T::CIRCLE:
m_start += aMoveVector;
m_end += aMoveVector;
m_arcCenter += aMoveVector;
break;
case SHAPE_T::POLY:
m_poly.Move( aMoveVector );
break;
case SHAPE_T::BEZIER:
m_start += aMoveVector;
m_end += aMoveVector;
m_bezierC1 += aMoveVector;
m_bezierC2 += aMoveVector;
for( VECTOR2I& pt : m_bezierPoints )
pt += aMoveVector;
break;
default:
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
break;
}
}
void EDA_SHAPE::scale( double aScale )
{
auto scalePt = [&]( VECTOR2I& pt )
{
pt.x = KiROUND( pt.x * aScale );
pt.y = KiROUND( pt.y * aScale );
};
switch( m_shape )
{
case SHAPE_T::ARC:
case SHAPE_T::SEGMENT:
case SHAPE_T::RECT:
scalePt( m_start );
scalePt( m_end );
scalePt( m_arcCenter );
break;
case SHAPE_T::CIRCLE: // ring or circle
scalePt( m_start );
m_end.x = m_start.x + KiROUND( GetRadius() * aScale );
m_end.y = m_start.y;
break;
case SHAPE_T::POLY: // polygon
{
std::vector<VECTOR2I> pts;
for( int ii = 0; ii < m_poly.OutlineCount(); ++ ii )
{
for( const VECTOR2I& pt : m_poly.Outline( ii ).CPoints() )
{
pts.emplace_back( pt );
scalePt( pts.back() );
}
}
SetPolyPoints( pts );
}
break;
case SHAPE_T::BEZIER:
scalePt( m_start );
scalePt( m_end );
scalePt( m_bezierC1 );
scalePt( m_bezierC2 );
break;
default:
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
break;
}
}
2022-01-16 21:15:20 +00:00
void EDA_SHAPE::rotate( const VECTOR2I& aRotCentre, const EDA_ANGLE& aAngle )
{
switch( m_shape )
{
case SHAPE_T::SEGMENT:
case SHAPE_T::CIRCLE:
RotatePoint( m_start, aRotCentre, aAngle );
RotatePoint( m_end, aRotCentre, aAngle );
break;
case SHAPE_T::ARC:
RotatePoint( m_start, aRotCentre, aAngle );
RotatePoint( m_end, aRotCentre, aAngle );
RotatePoint( m_arcCenter, aRotCentre, aAngle );
break;
case SHAPE_T::RECT:
2022-01-16 21:15:20 +00:00
if( aAngle.IsCardinal() )
{
RotatePoint( m_start, aRotCentre, aAngle );
RotatePoint( m_end, aRotCentre, aAngle );
break;
}
2022-01-30 10:52:52 +00:00
// Convert non-cardinally-rotated rect to a diamond
m_shape = SHAPE_T::POLY;
m_poly.RemoveAllContours();
m_poly.NewOutline();
m_poly.Append( m_start );
m_poly.Append( m_end.x, m_start.y );
m_poly.Append( m_end );
m_poly.Append( m_start.x, m_end.y );
KI_FALLTHROUGH;
case SHAPE_T::POLY:
m_poly.Rotate( aAngle, aRotCentre );
break;
case SHAPE_T::BEZIER:
RotatePoint( m_start, aRotCentre, aAngle );
RotatePoint( m_end, aRotCentre, aAngle );
RotatePoint( m_bezierC1, aRotCentre, aAngle );
RotatePoint( m_bezierC2, aRotCentre, aAngle );
for( VECTOR2I& pt : m_bezierPoints )
RotatePoint( pt, aRotCentre, aAngle);
break;
default:
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
break;
}
}
void EDA_SHAPE::flip( const VECTOR2I& aCentre, bool aFlipLeftRight )
{
switch ( m_shape )
{
case SHAPE_T::SEGMENT:
case SHAPE_T::RECT:
if( aFlipLeftRight )
{
m_start.x = aCentre.x - ( m_start.x - aCentre.x );
m_end.x = aCentre.x - ( m_end.x - aCentre.x );
}
else
{
m_start.y = aCentre.y - ( m_start.y - aCentre.y );
m_end.y = aCentre.y - ( m_end.y - aCentre.y );
}
std::swap( m_start, m_end );
break;
case SHAPE_T::CIRCLE:
if( aFlipLeftRight )
{
m_start.x = aCentre.x - ( m_start.x - aCentre.x );
m_end.x = aCentre.x - ( m_end.x - aCentre.x );
}
else
{
m_start.y = aCentre.y - ( m_start.y - aCentre.y );
m_end.y = aCentre.y - ( m_end.y - aCentre.y );
}
break;
case SHAPE_T::ARC:
if( aFlipLeftRight )
{
m_start.x = aCentre.x - ( m_start.x - aCentre.x );
m_end.x = aCentre.x - ( m_end.x - aCentre.x );
m_arcCenter.x = aCentre.x - ( m_arcCenter.x - aCentre.x );
}
else
{
m_start.y = aCentre.y - ( m_start.y - aCentre.y );
m_end.y = aCentre.y - ( m_end.y - aCentre.y );
m_arcCenter.y = aCentre.y - ( m_arcCenter.y - aCentre.y );
}
std::swap( m_start, m_end );
break;
case SHAPE_T::POLY:
m_poly.Mirror( aFlipLeftRight, !aFlipLeftRight, aCentre );
break;
case SHAPE_T::BEZIER:
if( aFlipLeftRight )
{
m_start.x = aCentre.x - ( m_start.x - aCentre.x );
m_end.x = aCentre.x - ( m_end.x - aCentre.x );
m_bezierC1.x = aCentre.x - ( m_bezierC1.x - aCentre.x );
m_bezierC2.x = aCentre.x - ( m_bezierC2.x - aCentre.x );
}
else
{
m_start.y = aCentre.y - ( m_start.y - aCentre.y );
m_end.y = aCentre.y - ( m_end.y - aCentre.y );
m_bezierC1.y = aCentre.y - ( m_bezierC1.y - aCentre.y );
m_bezierC2.y = aCentre.y - ( m_bezierC2.y - aCentre.y );
}
// Rebuild the poly points shape
{
std::vector<VECTOR2I> ctrlPoints = { m_start, m_bezierC1, m_bezierC2, m_end };
BEZIER_POLY converter( ctrlPoints );
converter.GetPoly( m_bezierPoints, m_stroke.GetWidth() );
}
break;
default:
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
break;
}
}
void EDA_SHAPE::RebuildBezierToSegmentsPointsList( int aMinSegLen )
{
// Has meaning only for SHAPE_T::BEZIER
if( m_shape != SHAPE_T::BEZIER )
{
m_bezierPoints.clear();
return;
}
// Rebuild the m_BezierPoints vertex list that approximate the Bezier curve
m_bezierPoints = buildBezierToSegmentsPointsList( aMinSegLen );
// Ensure last point respects aMinSegLen parameter
if( m_bezierPoints.size() > 2 )
{
int idx = m_bezierPoints.size()-1;
if( VECTOR2I( m_bezierPoints[idx] - m_bezierPoints[idx]-1 ).EuclideanNorm() < aMinSegLen )
{
m_bezierPoints[idx]-1 = m_bezierPoints[idx];
m_bezierPoints.pop_back();
}
}
}
const std::vector<VECTOR2I> EDA_SHAPE::buildBezierToSegmentsPointsList( int aMinSegLen ) const
{
std::vector<VECTOR2I> bezierPoints;
// Rebuild the m_BezierPoints vertex list that approximate the Bezier curve
std::vector<VECTOR2I> ctrlPoints = { m_start, m_bezierC1, m_bezierC2, m_end };
BEZIER_POLY converter( ctrlPoints );
converter.GetPoly( bezierPoints, aMinSegLen );
return bezierPoints;
}
VECTOR2I EDA_SHAPE::getCenter() const
{
switch( m_shape )
{
case SHAPE_T::ARC:
return m_arcCenter;
case SHAPE_T::CIRCLE:
return m_start;
case SHAPE_T::SEGMENT:
// Midpoint of the line
return ( m_start + m_end ) / 2;
case SHAPE_T::POLY:
case SHAPE_T::RECT:
case SHAPE_T::BEZIER:
return getBoundingBox().Centre();
default:
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
return VECTOR2I();
}
}
void EDA_SHAPE::SetCenter( const VECTOR2I& aCenter )
{
switch( m_shape )
{
case SHAPE_T::ARC:
m_arcCenter = aCenter;
break;
case SHAPE_T::CIRCLE:
m_start = aCenter;
break;
default:
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
}
}
VECTOR2I EDA_SHAPE::GetArcMid() const
{
// If none of the input data have changed since we loaded the arc,
// keep the original mid point data to minimize churn
if( m_arcMidData.start == m_start && m_arcMidData.end == m_end
&& m_arcMidData.center == m_arcCenter )
return m_arcMidData.mid;
VECTOR2I mid = m_start;
RotatePoint( mid, m_arcCenter, -GetArcAngle() / 2.0 );
return mid;
}
void EDA_SHAPE::CalcArcAngles( EDA_ANGLE& aStartAngle, EDA_ANGLE& aEndAngle ) const
{
VECTOR2D startRadial( GetStart() - getCenter() );
VECTOR2D endRadial( GetEnd() - getCenter() );
aStartAngle = EDA_ANGLE( startRadial );
aEndAngle = EDA_ANGLE( endRadial );
if( aEndAngle == aStartAngle )
aEndAngle = aStartAngle + ANGLE_360; // ring, not null
if( aStartAngle > aEndAngle )
{
if( aEndAngle < ANGLE_0 )
aEndAngle.Normalize();
else
aStartAngle = aStartAngle.Normalize() - ANGLE_360;
}
}
int EDA_SHAPE::GetRadius() const
{
double radius = 0.0;
switch( m_shape )
{
case SHAPE_T::ARC:
radius = GetLineLength( m_arcCenter, m_start );
break;
case SHAPE_T::CIRCLE:
radius = GetLineLength( m_start, m_end );
break;
default:
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
}
// don't allow degenerate circles/arcs
return std::max( 1, KiROUND( radius ) );
}
void EDA_SHAPE::SetCachedArcData( const VECTOR2I& aStart, const VECTOR2I& aMid, const VECTOR2I& aEnd, const VECTOR2I& aCenter )
{
m_arcMidData.start = aStart;
m_arcMidData.end = aEnd;
m_arcMidData.center = aCenter;
m_arcMidData.mid = aMid;
}
void EDA_SHAPE::SetArcGeometry( const VECTOR2I& aStart, const VECTOR2I& aMid, const VECTOR2I& aEnd )
{
m_arcMidData = {};
m_start = aStart;
m_end = aEnd;
m_arcCenter = CalcArcCenter( aStart, aMid, aEnd );
VECTOR2I new_mid = GetArcMid();
m_endsSwapped = false;
// Watch the ordering here. GetArcMid above needs to be called prior to initializing the
// m_arcMidData structure in order to ensure we get the calculated variant, not the cached
SetCachedArcData( aStart, aMid, aEnd, m_arcCenter );
/*
* If the input winding doesn't match our internal winding, the calculated midpoint will end
* up on the other side of the arc. In this case, we need to flip the start/end points and
* flag this change for the system.
*/
VECTOR2D dist( new_mid - aMid );
VECTOR2D dist2( new_mid - m_arcCenter );
if( dist.SquaredEuclideanNorm() > dist2.SquaredEuclideanNorm() )
{
std::swap( m_start, m_end );
m_endsSwapped = true;
}
}
2022-01-14 15:34:41 +00:00
EDA_ANGLE EDA_SHAPE::GetArcAngle() const
{
EDA_ANGLE startAngle;
EDA_ANGLE endAngle;
CalcArcAngles( startAngle, endAngle );
return endAngle - startAngle;
}
2022-01-16 16:15:07 +00:00
void EDA_SHAPE::SetArcAngleAndEnd( const EDA_ANGLE& aAngle, bool aCheckNegativeAngle )
{
2022-01-16 16:15:07 +00:00
EDA_ANGLE angle( aAngle );
m_end = m_start;
2022-01-16 16:15:07 +00:00
RotatePoint( m_end, m_arcCenter, -angle.Normalize720() );
2022-01-16 16:15:07 +00:00
if( aCheckNegativeAngle && aAngle < ANGLE_0 )
{
std::swap( m_start, m_end );
m_endsSwapped = true;
}
}
wxString EDA_SHAPE::GetFriendlyName() const
{
switch( m_shape )
{
case SHAPE_T::CIRCLE: return _( "Circle" );
case SHAPE_T::ARC: return _( "Arc" );
case SHAPE_T::BEZIER: return _( "Curve" );
case SHAPE_T::POLY: return _( "Polygon" );
case SHAPE_T::RECT: return IsAnnotationProxy() ? _( "Pad Number Box" ) : _( "Rectangle" );
case SHAPE_T::SEGMENT: return _( "Segment" );
default: return _( "Unrecognized" );
}
}
void EDA_SHAPE::ShapeGetMsgPanelInfo( EDA_DRAW_FRAME* aFrame, std::vector<MSG_PANEL_ITEM>& aList )
{
ORIGIN_TRANSFORMS originTransforms = aFrame->GetOriginTransforms();
wxString msg;
wxString shape = _( "Shape" );
aList.emplace_back( shape, GetFriendlyName() );
switch( m_shape )
{
case SHAPE_T::CIRCLE:
2022-09-19 09:25:20 +00:00
aList.emplace_back( _( "Radius" ), aFrame->MessageTextFromValue( GetRadius() ) );
break;
case SHAPE_T::ARC:
2022-09-16 04:38:10 +00:00
msg = EDA_UNIT_UTILS::UI::MessageTextFromValue( GetArcAngle() );
aList.emplace_back( _( "Angle" ), msg );
2022-09-19 09:25:20 +00:00
aList.emplace_back( _( "Radius" ), aFrame->MessageTextFromValue( GetRadius() ) );
break;
case SHAPE_T::BEZIER:
2022-09-19 09:25:20 +00:00
aList.emplace_back( _( "Length" ), aFrame->MessageTextFromValue( GetLength() ) );
break;
case SHAPE_T::POLY:
2023-01-17 00:07:41 +00:00
msg.Printf( wxS( "%d" ), GetPolyShape().Outline(0).PointCount() );
aList.emplace_back( _( "Points" ), msg );
break;
case SHAPE_T::RECT:
2022-09-19 09:25:20 +00:00
aList.emplace_back( _( "Width" ),
aFrame->MessageTextFromValue( std::abs( GetEnd().x - GetStart().x ) ) );
2022-09-19 09:25:20 +00:00
aList.emplace_back( _( "Height" ),
aFrame->MessageTextFromValue( std::abs( GetEnd().y - GetStart().y ) ) );
break;
case SHAPE_T::SEGMENT:
{
2022-09-19 09:25:20 +00:00
aList.emplace_back( _( "Length" ),
aFrame->MessageTextFromValue( GetLineLength( GetStart(), GetEnd() ) ));
// angle counter-clockwise from 3'o-clock
2022-02-27 11:54:03 +00:00
EDA_ANGLE angle( atan2( (double)( GetStart().y - GetEnd().y ),
(double)( GetEnd().x - GetStart().x ) ), RADIANS_T );
2022-09-16 04:38:10 +00:00
aList.emplace_back( _( "Angle" ), EDA_UNIT_UTILS::UI::MessageTextFromValue( angle ) );
break;
}
default:
break;
}
m_stroke.GetMsgPanelInfo( aFrame, aList );
}
2022-08-30 23:28:18 +00:00
const BOX2I EDA_SHAPE::getBoundingBox() const
{
2022-08-30 23:28:18 +00:00
BOX2I bbox;
switch( m_shape )
{
case SHAPE_T::RECT:
for( VECTOR2I& pt : GetRectCorners() )
bbox.Merge( pt );
break;
case SHAPE_T::SEGMENT:
bbox.SetOrigin( GetStart() );
bbox.SetEnd( GetEnd() );
break;
case SHAPE_T::CIRCLE:
bbox.SetOrigin( GetStart() );
bbox.Inflate( GetRadius() );
break;
case SHAPE_T::ARC:
computeArcBBox( bbox );
break;
case SHAPE_T::POLY:
if( m_poly.IsEmpty() )
break;
for( auto iter = m_poly.CIterate(); iter; iter++ )
bbox.Merge( *iter );
break;
case SHAPE_T::BEZIER:
bbox.SetOrigin( GetStart() );
bbox.Merge( GetBezierC1() );
bbox.Merge( GetBezierC2() );
bbox.Merge( GetEnd() );
break;
default:
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
break;
}
bbox.Inflate( std::max( 0, GetWidth() ) / 2 );
bbox.Normalize();
return bbox;
}
bool EDA_SHAPE::hitTest( const VECTOR2I& aPosition, int aAccuracy ) const
{
int maxdist = aAccuracy;
if( GetWidth() > 0 )
maxdist += GetWidth() / 2;
switch( m_shape )
{
case SHAPE_T::CIRCLE:
{
int radius = GetRadius();
VECTOR2I::extended_type dist = KiROUND<double, VECTOR2I::extended_type>(
EuclideanNorm( aPosition - getCenter() ) );
if( IsFilled() )
return dist <= radius + maxdist; // Filled circle hit-test
else
return abs( radius - dist ) <= maxdist; // Ring hit-test
}
case SHAPE_T::ARC:
{
if( EuclideanNorm( aPosition - m_start ) <= maxdist )
return true;
if( EuclideanNorm( aPosition - m_end ) <= maxdist )
return true;
VECTOR2I relPos = aPosition - getCenter();
int radius = GetRadius();
VECTOR2I::extended_type dist =
KiROUND<double, VECTOR2I::extended_type>( EuclideanNorm( relPos ) );
if( IsFilled() )
{
// Check distance from arc center
if( dist > radius + maxdist )
return false;
}
else
{
// Check distance from arc circumference
if( abs( radius - dist ) > maxdist )
return false;
}
// Finally, check to see if it's within arc's swept angle.
EDA_ANGLE startAngle;
EDA_ANGLE endAngle;
CalcArcAngles( startAngle, endAngle );
EDA_ANGLE relPosAngle( relPos );
startAngle.Normalize();
endAngle.Normalize();
relPosAngle.Normalize();
if( endAngle > startAngle )
return relPosAngle >= startAngle && relPosAngle <= endAngle;
else
return relPosAngle >= startAngle || relPosAngle <= endAngle;
}
case SHAPE_T::BEZIER:
const_cast<EDA_SHAPE*>( this )->RebuildBezierToSegmentsPointsList( GetWidth() );
for( unsigned int i= 1; i < m_bezierPoints.size(); i++)
{
if( TestSegmentHit( aPosition, m_bezierPoints[ i - 1], m_bezierPoints[i], maxdist ) )
return true;
}
return false;
case SHAPE_T::SEGMENT:
return TestSegmentHit( aPosition, GetStart(), GetEnd(), maxdist );
case SHAPE_T::RECT:
if( IsAnnotationProxy() || IsFilled() ) // Filled rect hit-test
{
SHAPE_POLY_SET poly;
poly.NewOutline();
for( const VECTOR2I& pt : GetRectCorners() )
poly.Append( pt );
return poly.Collide( aPosition, maxdist );
}
else // Open rect hit-test
{
std::vector<VECTOR2I> pts = GetRectCorners();
return TestSegmentHit( aPosition, pts[0], pts[1], maxdist )
|| TestSegmentHit( aPosition, pts[1], pts[2], maxdist )
|| TestSegmentHit( aPosition, pts[2], pts[3], maxdist )
|| TestSegmentHit( aPosition, pts[3], pts[0], maxdist );
}
case SHAPE_T::POLY:
if( IsFilled() )
return m_poly.Collide( aPosition, maxdist );
else
return m_poly.CollideEdge( aPosition, nullptr, maxdist );
default:
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
return false;
}
}
2022-08-31 09:33:46 +00:00
bool EDA_SHAPE::hitTest( const BOX2I& aRect, bool aContained, int aAccuracy ) const
{
2022-08-31 09:33:46 +00:00
BOX2I arect = aRect;
arect.Normalize();
arect.Inflate( aAccuracy );
2022-08-31 09:33:46 +00:00
BOX2I bbox = getBoundingBox();
switch( m_shape )
{
case SHAPE_T::CIRCLE:
// Test if area intersects or contains the circle:
if( aContained )
{
2022-08-31 09:33:46 +00:00
return arect.Contains( bbox );
}
else
{
// If the rectangle does not intersect the bounding box, this is a much quicker test
2022-08-31 09:33:46 +00:00
if( !arect.Intersects( bbox ) )
return false;
else
return arect.IntersectsCircleEdge( getCenter(), GetRadius(), GetWidth() );
}
case SHAPE_T::ARC:
// Test for full containment of this arc in the rect
if( aContained )
{
2022-08-31 09:33:46 +00:00
return arect.Contains( bbox );
}
// Test if the rect crosses the arc
else
{
2022-08-31 09:33:46 +00:00
if( !arect.Intersects( bbox ) )
return false;
if( IsFilled() )
{
return ( arect.Intersects( getCenter(), GetStart() )
|| arect.Intersects( getCenter(), GetEnd() )
|| arect.IntersectsCircleEdge( getCenter(), GetRadius(), GetWidth() ) );
}
else
{
return arect.IntersectsCircleEdge( getCenter(), GetRadius(), GetWidth() );
}
}
case SHAPE_T::RECT:
if( aContained )
{
2022-08-31 09:33:46 +00:00
return arect.Contains( bbox );
}
else
{
std::vector<VECTOR2I> pts = GetRectCorners();
// Account for the width of the lines
arect.Inflate( GetWidth() / 2 );
return ( arect.Intersects( pts[0], pts[1] )
|| arect.Intersects( pts[1], pts[2] )
|| arect.Intersects( pts[2], pts[3] )
|| arect.Intersects( pts[3], pts[0] ) );
}
case SHAPE_T::SEGMENT:
if( aContained )
{
return arect.Contains( GetStart() ) && aRect.Contains( GetEnd() );
}
else
{
// Account for the width of the line
arect.Inflate( GetWidth() / 2 );
return arect.Intersects( GetStart(), GetEnd() );
}
case SHAPE_T::POLY:
if( aContained )
{
2022-08-31 09:33:46 +00:00
return arect.Contains( bbox );
}
else
{
// Fast test: if aRect is outside the polygon bounding box,
// rectangles cannot intersect
2022-08-31 09:33:46 +00:00
if( !arect.Intersects( bbox ) )
return false;
// Account for the width of the line
arect.Inflate( GetWidth() / 2 );
for( int ii = 0; ii < m_poly.OutlineCount(); ++ii )
{
const SHAPE_LINE_CHAIN& poly = m_poly.Outline( ii );
int count = poly.GetPointCount();
for( int jj = 0; jj < count; jj++ )
{
VECTOR2I vertex = poly.GetPoint( jj );
// Test if the point is within aRect
if( arect.Contains( vertex ) )
return true;
if( jj + 1 < count )
{
VECTOR2I vertexNext = poly.GetPoint( jj + 1 );
// Test if this edge intersects aRect
if( arect.Intersects( vertex, vertexNext ) )
return true;
}
else if( poly.IsClosed() )
{
VECTOR2I vertexNext = poly.GetPoint( 0 );
// Test if this edge intersects aRect
if( arect.Intersects( vertex, vertexNext ) )
return true;
}
}
}
return false;
}
case SHAPE_T::BEZIER:
if( aContained )
{
2022-08-31 09:33:46 +00:00
return arect.Contains( bbox );
}
else
{
// Fast test: if aRect is outside the polygon bounding box,
// rectangles cannot intersect
2022-08-31 09:33:46 +00:00
if( !arect.Intersects( bbox ) )
return false;
// Account for the width of the line
arect.Inflate( GetWidth() / 2 );
unsigned count = m_bezierPoints.size();
for( unsigned ii = 1; ii < count; ii++ )
{
VECTOR2I vertex = m_bezierPoints[ii - 1];
VECTOR2I vertexNext = m_bezierPoints[ii];
// Test if the point is within aRect
if( arect.Contains( vertex ) )
return true;
// Test if this edge intersects aRect
if( arect.Intersects( vertex, vertexNext ) )
return true;
}
return false;
}
default:
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
return false;
}
}
std::vector<VECTOR2I> EDA_SHAPE::GetRectCorners() const
{
std::vector<VECTOR2I> pts;
VECTOR2I topLeft = GetStart();
VECTOR2I botRight = GetEnd();
pts.emplace_back( topLeft );
pts.emplace_back( botRight.x, topLeft.y );
pts.emplace_back( botRight );
pts.emplace_back( topLeft.x, botRight.y );
return pts;
}
2022-08-30 23:28:18 +00:00
void EDA_SHAPE::computeArcBBox( BOX2I& aBBox ) const
{
// Start, end, and each inflection point the arc crosses will enclose the entire arc.
// Only include the center when filled; it's not necessarily inside the BB of an unfilled
// arc with a small included angle.
aBBox.SetOrigin( m_start );
aBBox.Merge( m_end );
if( IsFilled() )
aBBox.Merge( m_arcCenter );
int radius = GetRadius();
EDA_ANGLE t1, t2;
CalcArcAngles( t1, t2 );
t1.Normalize();
t2.Normalize();
if( t2 > t1 )
{
if( t1 < ANGLE_0 && t2 > ANGLE_0 )
aBBox.Merge( VECTOR2I( m_arcCenter.x + radius, m_arcCenter.y ) ); // right
if( t1 < ANGLE_90 && t2 > ANGLE_90 )
aBBox.Merge( VECTOR2I( m_arcCenter.x, m_arcCenter.y + radius ) ); // down
if( t1 < ANGLE_180 && t2 > ANGLE_180 )
aBBox.Merge( VECTOR2I( m_arcCenter.x - radius, m_arcCenter.y ) ); // left
if( t1 < ANGLE_270 && t2 > ANGLE_270 )
aBBox.Merge( VECTOR2I( m_arcCenter.x, m_arcCenter.y - radius ) ); // up
}
else
{
if( t1 < ANGLE_0 || t2 > ANGLE_0 )
aBBox.Merge( VECTOR2I( m_arcCenter.x + radius, m_arcCenter.y ) ); // right
if( t1 < ANGLE_90 || t2 > ANGLE_90 )
aBBox.Merge( VECTOR2I( m_arcCenter.x, m_arcCenter.y + radius ) ); // down
if( t1 < ANGLE_180 || t2 > ANGLE_180 )
aBBox.Merge( VECTOR2I( m_arcCenter.x - radius, m_arcCenter.y ) ); // left
if( t1 < ANGLE_270 || t2 > ANGLE_270 )
aBBox.Merge( VECTOR2I( m_arcCenter.x, m_arcCenter.y - radius ) ); // up
}
}
void EDA_SHAPE::SetPolyPoints( const std::vector<VECTOR2I>& aPoints )
{
m_poly.RemoveAllContours();
m_poly.NewOutline();
for( const VECTOR2I& p : aPoints )
m_poly.Append( p.x, p.y );
}
std::vector<SHAPE*> EDA_SHAPE::makeEffectiveShapes( bool aEdgeOnly, bool aLineChainOnly ) const
{
std::vector<SHAPE*> effectiveShapes;
int width = GetEffectiveWidth();
switch( m_shape )
{
case SHAPE_T::ARC:
effectiveShapes.emplace_back( new SHAPE_ARC( m_arcCenter, m_start, GetArcAngle(), width ) );
break;
case SHAPE_T::SEGMENT:
effectiveShapes.emplace_back( new SHAPE_SEGMENT( m_start, m_end, width ) );
break;
case SHAPE_T::RECT:
{
std::vector<VECTOR2I> pts = GetRectCorners();
if( ( IsFilled() || IsAnnotationProxy() ) && !aEdgeOnly )
effectiveShapes.emplace_back( new SHAPE_SIMPLE( pts ) );
if( width > 0 || !IsFilled() || aEdgeOnly )
{
effectiveShapes.emplace_back( new SHAPE_SEGMENT( pts[0], pts[1], width ) );
effectiveShapes.emplace_back( new SHAPE_SEGMENT( pts[1], pts[2], width ) );
effectiveShapes.emplace_back( new SHAPE_SEGMENT( pts[2], pts[3], width ) );
effectiveShapes.emplace_back( new SHAPE_SEGMENT( pts[3], pts[0], width ) );
}
}
break;
case SHAPE_T::CIRCLE:
{
if( IsFilled() && !aEdgeOnly )
effectiveShapes.emplace_back( new SHAPE_CIRCLE( getCenter(), GetRadius() ) );
if( width > 0 || !IsFilled() || aEdgeOnly )
effectiveShapes.emplace_back( new SHAPE_ARC( getCenter(), GetEnd(), ANGLE_360, width ) );
break;
}
case SHAPE_T::BEZIER:
{
std::vector<VECTOR2I> bezierPoints = buildBezierToSegmentsPointsList( width );
VECTOR2I start_pt = bezierPoints[0];
for( unsigned int jj = 1; jj < bezierPoints.size(); jj++ )
{
VECTOR2I end_pt = bezierPoints[jj];
effectiveShapes.emplace_back( new SHAPE_SEGMENT( start_pt, end_pt, width ) );
start_pt = end_pt;
}
break;
}
case SHAPE_T::POLY:
{
if( GetPolyShape().OutlineCount() == 0 ) // malformed/empty polygon
break;
for( int ii = 0; ii < GetPolyShape().OutlineCount(); ++ii )
{
SHAPE_LINE_CHAIN l = GetPolyShape().COutline( ii );
if( aLineChainOnly )
l.SetClosed( false );
if( IsFilled() && !aEdgeOnly )
effectiveShapes.emplace_back( new SHAPE_SIMPLE( l ) );
if( width > 0 || !IsFilled() || aEdgeOnly )
{
for( int jj = 0; jj < l.SegmentCount(); jj++ )
effectiveShapes.emplace_back( new SHAPE_SEGMENT( l.Segment( jj ), width ) );
}
}
}
break;
default:
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
break;
}
return effectiveShapes;
}
void EDA_SHAPE::DupPolyPointsList( std::vector<VECTOR2I>& aBuffer ) const
{
for( int ii = 0; ii < m_poly.OutlineCount(); ++ii )
{
int pointCount = m_poly.COutline( ii ).PointCount();
if( pointCount )
{
aBuffer.reserve( pointCount );
for ( auto iter = m_poly.CIterate(); iter; iter++ )
aBuffer.emplace_back( iter->x, iter->y );
}
}
}
bool EDA_SHAPE::IsPolyShapeValid() const
{
// return true if the polygonal shape is valid (has more than 2 points)
if( GetPolyShape().OutlineCount() == 0 )
return false;
const SHAPE_LINE_CHAIN& outline = static_cast<const SHAPE_POLY_SET&>( GetPolyShape() ).Outline( 0 );
return outline.PointCount() > 2;
}
int EDA_SHAPE::GetPointCount() const
{
// return the number of corners of the polygonal shape
// this shape is expected to be only one polygon without hole
if( GetPolyShape().OutlineCount() )
return GetPolyShape().VertexCount( 0 );
return 0;
}
void EDA_SHAPE::beginEdit( const VECTOR2I& aPosition )
{
switch( GetShape() )
{
case SHAPE_T::SEGMENT:
case SHAPE_T::CIRCLE:
case SHAPE_T::RECT:
SetStart( aPosition );
SetEnd( aPosition );
break;
case SHAPE_T::ARC:
SetArcGeometry( aPosition, aPosition, aPosition );
m_editState = 1;
break;
case SHAPE_T::POLY:
m_poly.NewOutline();
m_poly.Outline( 0 ).SetClosed( false );
// Start and end of the first segment (co-located for now)
m_poly.Outline( 0 ).Append( aPosition );
m_poly.Outline( 0 ).Append( aPosition, true );
break;
default:
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
}
}
bool EDA_SHAPE::continueEdit( const VECTOR2I& aPosition )
{
switch( GetShape() )
{
case SHAPE_T::ARC:
case SHAPE_T::SEGMENT:
case SHAPE_T::CIRCLE:
case SHAPE_T::RECT:
return false;
case SHAPE_T::POLY:
{
SHAPE_LINE_CHAIN& poly = m_poly.Outline( 0 );
// do not add zero-length segments
if( poly.CPoint( poly.GetPointCount() - 2 ) != poly.CLastPoint() )
poly.Append( aPosition, true );
}
return true;
default:
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
return false;
}
}
void EDA_SHAPE::calcEdit( const VECTOR2I& aPosition )
{
#define sq( x ) pow( x, 2 )
switch( GetShape() )
{
case SHAPE_T::SEGMENT:
case SHAPE_T::CIRCLE:
case SHAPE_T::RECT:
SetEnd( aPosition );
break;
case SHAPE_T::ARC:
{
int radius = GetRadius();
// Edit state 0: drawing: place start
// Edit state 1: drawing: place end (center calculated for 90-degree subtended angle)
// Edit state 2: point edit: move start (center calculated for invariant subtended angle)
// Edit state 3: point edit: move end (center calculated for invariant subtended angle)
// Edit state 4: point edit: move center
// Edit state 5: point edit: move arc-mid-point
switch( m_editState )
{
case 0:
SetArcGeometry( aPosition, aPosition, aPosition );
return;
case 1:
m_end = aPosition;
radius = KiROUND( sqrt( sq( GetLineLength( m_start, m_end ) ) / 2.0 ) );
break;
case 2:
case 3:
{
VECTOR2I v = m_start - m_end;
double chordBefore = sq( v.x ) + sq( v.y );
if( m_editState == 2 )
m_start = aPosition;
else
m_end = aPosition;
v = m_start - m_end;
double chordAfter = sq( v.x ) + sq( v.y );
double ratio = chordAfter / chordBefore;
if( ratio != 0 )
{
radius = std::max( int( sqrt( sq( radius ) * ratio ) ) + 1,
int( sqrt( chordAfter ) / 2 ) + 1 );
}
}
break;
case 4:
{
double radialA = GetLineLength( m_start, aPosition );
double radialB = GetLineLength( m_end, aPosition );
radius = int( ( radialA + radialB ) / 2.0 ) + 1;
}
break;
case 5:
SetArcGeometry( GetStart(), aPosition, GetEnd() );
return;
}
// Calculate center based on start, end, and radius
//
// Let 'l' be the length of the chord and 'm' the middle point of the chord
double l = GetLineLength( m_start, m_end );
VECTOR2I m = ( m_start + m_end ) / 2;
// Calculate 'd', the vector from the chord midpoint to the center
VECTOR2I d;
d.x = KiROUND( sqrt( sq( radius ) - sq( l/2 ) ) * ( m_start.y - m_end.y ) / l );
d.y = KiROUND( sqrt( sq( radius ) - sq( l/2 ) ) * ( m_end.x - m_start.x ) / l );
VECTOR2I c1 = m + d;
VECTOR2I c2 = m - d;
// Solution gives us 2 centers; we need to pick one:
switch( m_editState )
{
case 1:
// Keep arc clockwise while drawing i.e. arc angle = 90 deg.
// it can be 90 or 270 deg depending on the arc center choice (c1 or c2)
m_arcCenter = c1; // first trial
if( GetArcAngle() > ANGLE_180 )
m_arcCenter = c2;
break;
case 2:
case 3:
// Pick the one of c1, c2 to keep arc <= 180 deg
m_arcCenter = c1; // first trial
if( GetArcAngle() > ANGLE_180 )
m_arcCenter = c2;
break;
case 4:
// Pick the one closer to the mouse position
m_arcCenter = GetLineLength( c1, aPosition ) < GetLineLength( c2, aPosition ) ? c1 : c2;
// keep arc angle <= 180 deg
2022-01-14 15:34:41 +00:00
if( GetArcAngle() > ANGLE_180 )
std::swap( m_start, m_end );
break;
}
}
break;
case SHAPE_T::POLY:
m_poly.Outline( 0 ).SetPoint( m_poly.Outline( 0 ).GetPointCount() - 1, aPosition );
break;
default:
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
}
}
void EDA_SHAPE::endEdit( bool aClosed )
{
switch( GetShape() )
{
case SHAPE_T::ARC:
case SHAPE_T::SEGMENT:
case SHAPE_T::CIRCLE:
case SHAPE_T::RECT:
break;
case SHAPE_T::POLY:
{
SHAPE_LINE_CHAIN& poly = m_poly.Outline( 0 );
// do not include last point twice
if( poly.GetPointCount() > 2 )
{
if( poly.CPoint( poly.GetPointCount() - 2 ) == poly.CLastPoint() )
{
poly.SetClosed( aClosed );
poly.Remove( poly.GetPointCount() - 1 );
}
}
}
break;
default:
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
}
}
void EDA_SHAPE::SwapShape( EDA_SHAPE* aImage )
{
EDA_SHAPE* image = dynamic_cast<EDA_SHAPE*>( aImage );
assert( image );
#define SWAPITEM( x ) std::swap( x, image->x )
SWAPITEM( m_stroke );
SWAPITEM( m_start );
SWAPITEM( m_end );
SWAPITEM( m_arcCenter );
SWAPITEM( m_shape );
SWAPITEM( m_bezierC1 );
SWAPITEM( m_bezierC2 );
SWAPITEM( m_bezierPoints );
SWAPITEM( m_poly );
SWAPITEM( m_fill );
SWAPITEM( m_fillColor );
SWAPITEM( m_editState );
SWAPITEM( m_endsSwapped );
#undef SWAPITEM
}
int EDA_SHAPE::Compare( const EDA_SHAPE* aOther ) const
{
#define EPSILON 2 // Should be enough for rounding errors on calculated items
#define TEST( a, b ) { if( a != b ) return a - b; }
#define TEST_E( a, b ) { if( abs( a - b ) > EPSILON ) return a - b; }
#define TEST_PT( a, b ) { TEST_E( a.x, b.x ); TEST_E( a.y, b.y ); }
TEST_PT( m_start, aOther->m_start );
TEST_PT( m_end, aOther->m_end );
TEST( (int) m_shape, (int) aOther->m_shape );
if( m_shape == SHAPE_T::ARC )
{
TEST_PT( m_arcCenter, aOther->m_arcCenter );
}
else if( m_shape == SHAPE_T::BEZIER )
{
TEST_PT( m_bezierC1, aOther->m_bezierC1 );
TEST_PT( m_bezierC2, aOther->m_bezierC2 );
}
else if( m_shape == SHAPE_T::POLY )
{
TEST( m_poly.TotalVertices(), aOther->m_poly.TotalVertices() );
}
for( size_t ii = 0; ii < m_bezierPoints.size(); ++ii )
TEST_PT( m_bezierPoints[ii], aOther->m_bezierPoints[ii] );
for( int ii = 0; ii < m_poly.TotalVertices(); ++ii )
TEST_PT( m_poly.CVertex( ii ), aOther->m_poly.CVertex( ii ) );
TEST_E( m_stroke.GetWidth(), aOther->m_stroke.GetWidth() );
TEST( (int) m_stroke.GetPlotStyle(), (int) aOther->m_stroke.GetPlotStyle() );
TEST( (int) m_fill, (int) aOther->m_fill );
return 0;
}
void EDA_SHAPE::TransformShapeToPolygon( SHAPE_POLY_SET& aBuffer, int aClearance, int aError,
ERROR_LOC aErrorLoc, bool ignoreLineWidth ) const
{
int width = ignoreLineWidth ? 0 : GetWidth();
width += 2 * aClearance;
switch( m_shape )
{
case SHAPE_T::CIRCLE:
{
int r = GetRadius();
if( IsFilled() )
TransformCircleToPolygon( aBuffer, getCenter(), r + width / 2, aError, aErrorLoc );
else
TransformRingToPolygon( aBuffer, getCenter(), r, width, aError, aErrorLoc );
break;
}
case SHAPE_T::RECT:
{
std::vector<VECTOR2I> pts = GetRectCorners();
if( IsFilled() || IsAnnotationProxy() )
{
aBuffer.NewOutline();
for( const VECTOR2I& pt : pts )
aBuffer.Append( pt );
}
if( width > 0 || !IsFilled() )
{
// Add in segments
TransformOvalToPolygon( aBuffer, pts[0], pts[1], width, aError, aErrorLoc );
TransformOvalToPolygon( aBuffer, pts[1], pts[2], width, aError, aErrorLoc );
TransformOvalToPolygon( aBuffer, pts[2], pts[3], width, aError, aErrorLoc );
TransformOvalToPolygon( aBuffer, pts[3], pts[0], width, aError, aErrorLoc );
}
break;
}
case SHAPE_T::ARC:
TransformArcToPolygon( aBuffer, GetStart(), GetArcMid(), GetEnd(), width, aError, aErrorLoc );
break;
case SHAPE_T::SEGMENT:
TransformOvalToPolygon( aBuffer, GetStart(), GetEnd(), width, aError, aErrorLoc );
break;
case SHAPE_T::POLY:
{
if( !IsPolyShapeValid() )
break;
if( IsFilled() )
{
aBuffer.NewOutline();
for( int ii = 0; ii < m_poly.OutlineCount(); ++ii )
{
const SHAPE_LINE_CHAIN& poly = m_poly.Outline( ii );
for( int jj = 0; jj < (int) poly.GetPointCount(); ++jj )
aBuffer.Append( poly.GetPoint( jj ) );
}
}
if( width > 0 || !IsFilled() )
{
for( int ii = 0; ii < m_poly.OutlineCount(); ++ii )
{
const SHAPE_LINE_CHAIN& poly = m_poly.Outline( ii );
for( int jj = 0; jj < (int) poly.SegmentCount(); ++jj )
{
const SEG& seg = poly.GetSegment( jj );
TransformOvalToPolygon( aBuffer, seg.A, seg.B, width, aError, aErrorLoc );
}
}
}
break;
}
case SHAPE_T::BEZIER:
{
std::vector<VECTOR2I> ctrlPts = { GetStart(), GetBezierC1(), GetBezierC2(), GetEnd() };
BEZIER_POLY converter( ctrlPts );
std::vector<VECTOR2I> poly;
converter.GetPoly( poly, GetWidth() );
for( unsigned ii = 1; ii < poly.size(); ii++ )
TransformOvalToPolygon( aBuffer, poly[ii - 1], poly[ii], width, aError, aErrorLoc );
break;
}
default:
UNIMPLEMENTED_FOR( SHAPE_T_asString() );
break;
}
}
IMPLEMENT_ENUM_TO_WXANY( SHAPE_T )
IMPLEMENT_ENUM_TO_WXANY( PLOT_DASH_TYPE )
static struct EDA_SHAPE_DESC
{
EDA_SHAPE_DESC()
{
ENUM_MAP<SHAPE_T>::Instance()
.Map( SHAPE_T::SEGMENT, _HKI( "Segment" ) )
.Map( SHAPE_T::RECT, _HKI( "Rectangle" ) )
.Map( SHAPE_T::ARC, _HKI( "Arc" ) )
.Map( SHAPE_T::CIRCLE, _HKI( "Circle" ) )
.Map( SHAPE_T::POLY, _HKI( "Polygon" ) )
.Map( SHAPE_T::BEZIER, _HKI( "Bezier" ) );
2023-07-02 02:23:31 +00:00
auto& plotDashTypeEnum = ENUM_MAP<PLOT_DASH_TYPE>::Instance();
if( plotDashTypeEnum.Choices().GetCount() == 0 )
{
plotDashTypeEnum.Map( PLOT_DASH_TYPE::DEFAULT, _HKI( "Default" ) )
.Map( PLOT_DASH_TYPE::SOLID, _HKI( "Solid" ) )
.Map( PLOT_DASH_TYPE::DASH, _HKI( "Dashed" ) )
.Map( PLOT_DASH_TYPE::DOT, _HKI( "Dotted" ) )
.Map( PLOT_DASH_TYPE::DASHDOT, _HKI( "Dash-Dot" ) )
.Map( PLOT_DASH_TYPE::DASHDOTDOT, _HKI( "Dash-Dot-Dot" ) );
}
PROPERTY_MANAGER& propMgr = PROPERTY_MANAGER::Instance();
REGISTER_TYPE( EDA_SHAPE );
auto isNotPolygon =
[]( INSPECTABLE* aItem ) -> bool
{
// Polygons, unlike other shapes, have no meaningful start or end coordinates
if( EDA_SHAPE* shape = dynamic_cast<EDA_SHAPE*>( aItem ) )
return shape->GetShape() != SHAPE_T::POLY;
return false;
};
auto shape = new PROPERTY_ENUM<EDA_SHAPE, SHAPE_T>( _HKI( "Shape" ),
NO_SETTER( EDA_SHAPE, SHAPE_T ), &EDA_SHAPE::GetShape );
propMgr.AddProperty( shape );
propMgr.AddProperty( new PROPERTY<EDA_SHAPE, int>( _HKI( "Start X" ),
&EDA_SHAPE::SetStartX, &EDA_SHAPE::GetStartX, PROPERTY_DISPLAY::PT_COORD,
ORIGIN_TRANSFORMS::ABS_X_COORD ) )
.SetAvailableFunc( isNotPolygon );
propMgr.AddProperty( new PROPERTY<EDA_SHAPE, int>( _HKI( "Start Y" ),
&EDA_SHAPE::SetStartY, &EDA_SHAPE::GetStartY, PROPERTY_DISPLAY::PT_COORD,
ORIGIN_TRANSFORMS::ABS_Y_COORD ) )
.SetAvailableFunc( isNotPolygon );
propMgr.AddProperty( new PROPERTY<EDA_SHAPE, int>( _HKI( "End X" ),
&EDA_SHAPE::SetEndX, &EDA_SHAPE::GetEndX, PROPERTY_DISPLAY::PT_COORD,
ORIGIN_TRANSFORMS::ABS_X_COORD ) )
.SetAvailableFunc( isNotPolygon );
propMgr.AddProperty( new PROPERTY<EDA_SHAPE, int>( _HKI( "End Y" ),
&EDA_SHAPE::SetEndY, &EDA_SHAPE::GetEndY, PROPERTY_DISPLAY::PT_COORD,
ORIGIN_TRANSFORMS::ABS_Y_COORD ) )
.SetAvailableFunc( isNotPolygon );
// TODO: m_arcCenter, m_bezierC1, m_bezierC2, m_poly
propMgr.AddProperty( new PROPERTY<EDA_SHAPE, int>( _HKI( "Line Width" ),
&EDA_SHAPE::SetWidth, &EDA_SHAPE::GetWidth, PROPERTY_DISPLAY::PT_SIZE ) );
auto angle = new PROPERTY<EDA_SHAPE, EDA_ANGLE>( _HKI( "Angle" ),
NO_SETTER( EDA_SHAPE, EDA_ANGLE ), &EDA_SHAPE::GetArcAngle,
PROPERTY_DISPLAY::PT_DECIDEGREE );
angle->SetAvailableFunc(
[=]( INSPECTABLE* aItem ) -> bool
{
return aItem->Get<SHAPE_T>( shape ) == SHAPE_T::ARC;
} );
propMgr.AddProperty( angle );
2022-12-22 22:44:31 +00:00
auto filled = new PROPERTY<EDA_SHAPE, bool>( _HKI( "Filled" ),
&EDA_SHAPE::SetFilled, &EDA_SHAPE::IsFilled );
filled->SetAvailableFunc(
[=]( INSPECTABLE* aItem ) -> bool
{
SHAPE_T itemShape;
try
{
itemShape = aItem->Get<SHAPE_T>( shape );
}
catch( std::runtime_error& err )
{
wxFAIL_MSG( err.what() );
return false;
}
2022-12-22 22:44:31 +00:00
switch( itemShape )
{
case SHAPE_T::POLY:
case SHAPE_T::RECT:
case SHAPE_T::CIRCLE:
return true;
default:
return false;
}
} );
propMgr.AddProperty( filled );
}
} _EDA_SHAPE_DESC;