*) Implement a framework for "Data Load On Demand".
*) Implement FP_LIB_TABLE* PROJECT::PcbFootprintLibs(), which is the first
prototype.
This allows the project specific footprint tables to be part of the Module Editor
when invoked from Eeschema.
*) Eeschema can now show the footprint editor.
*) Eeschema can now invoke the footprint picker from the library part field editor.
*) KIWAY_PLAYER::ShowModal() takes aResultantFocusWindow that tells what window
to give the focus to. Required since frames are often near the top of the
hierarchy and they are invoked by a peer, not a parent.
*) KIWAY_PLAYER::IsModal() is now a retained state, controlled by SetModal()
*) Fully re-work the KIWAY_PLAYER::ShowModal() to use a nested event loop.
*) Add support to DIALOG_SHIM for a "quasi-modal" dialog presentation and mode.
See top of dialog_shim.cpp about that for benefits and need.
*) You can now pick footprint from the schematic component field dialog, although
if you do this before you open the BOARD, you will only get the global footprint
libraries, not also the project specific ones. Opening the BOARD first avoids this
problem.
This is the first example of cross KIFACE invocation, it is also the first
instance of using a TOP_FRAME other than FRAME_PCB as the first thing. It works,
but it's missing support for opening the project specific table because
historically the FRAME_PCB did that. This is now starting to expose all the near
term needs for KIWAY_PLAYER <-> PROJECT interaction, independence and out of
sequence usage.
A fix for this will be coming in a few days.
However it mostly starts to show why the KIWAY is terribly useful and important.
*) Rework the set language support, simplify it by using KIWAY. Now any major
frame with a "change language" menu can change the language for all KIWAY_PLAYERs
in the whole KIWAY. Multiple KIWAYs are not supported yet.
*) Simplify "modal wxFrame" support, and add that support exclusively to
KIWAY_PLAYER where it is inherited by all derivatives. The function
KIWAY_PLAYER::ShowModal() is in the vtable and so is cross module capable.
*) Remove the requirements and assumptions that the wxFrame hierarchy always
had PCB_EDIT_FRAME and SCH_EDIT_FRAME as immediate parents of their viewers
and editors. This is no longer the case, nor required.
*) Use KIWAY::Player() everywhere to make KIWAY_PLAYERs, this registers the
KIWAY_PLAYER within the KIWAY and makes it very easy to find an open frame
quickly. It also gives control to the KIWAY as to frame hierarchical
relationships.
*) Change single_top to use the KIWAY for loading a KIFACE and instantiating
the single KIWAY_PLAYER, see bullet immediately above.
*) Add KIWAY::OnKiwayEnd() and call it from PGM_BASE at program termination, this
gives the KIFACEs a chance to save their final configuration dope to disk.
*) Add dedicated FRAME_T's for the modal frames, so m_Ident can be tested and
these modal frames are distinctly different than their non-modal equivalents.
KIWAY_PLAYER::IsModal() is !not! a valid test during the wxFrame's constructor,
so this is another important reason for having a dedicated FRAME_T for each
modal wxFrame.
On balance, more lines were deleted than were added to achieve all this.
SVG plot, fix a missing reinitialization in plot lines, which could define a filled polyline, instead of a simple polyline
(these fixes solve Bug #1313084 )
(for instance, when a footprint from the currently edited board is loaded in the footprint editor, and when the board is cleared or reloaded)
In footprint editor, the net names are no more shown od modifiable (becuase the footprint editor does not know anything about net names.
This change should allow the changes planned in pcbnew.
*) void KIWAY::ExpressMail( FRAME_T aDestination, MAIL_T aCommand, const std::string& aPayload, wxWindow* aSource=NULL );
*) virtual void KiwayMailIn( KIWAY_EXPRESS& aEvent );
*) enum MAIL_T expansion into the brave new world if cross KIWAY_PLAYER communications.
Let the KIWAY_PLAYING begin.....
through well conceived mail from one KIWAY_PLAYER to another.
Get thinking now. Add a new MAIL_T value, then send ExpressMail(),
and receive it in KiwayMailIn(), it's that easy.
Eeschema, Pcbnew, and Cvpcb all run under the same process now,
FOR THE VERY FIRST TIME!
*) Added KIWAY::PlayerCreate(), PlayerClose(), and PlayersClose().
*) Factored FRAME_T into <frame_type.h> from ID_DRAWFRAME_TYPE.
*) Found that the following command line is helpful for collecting all the *.kiface
files into the <build>/kicad/ directory so that kicad can find them.
$ cp `find . -name '*.kiface'` kicad/
Maybe somebody will want to rework how the CMake files are organized so all
the binaries can go into the same place. See python-a-mingw-us.
*) This might fix the problem on the Mac where child process windows were not
coming to the front. See ->Raise() in kicad/mainframe.cpp.
*) You can set USE_KIFACE to 0 in kicad/mainframe.cpp to chain load child exes
instead of using the KIFACE modules directly, i.e. revert.
if it is running under single_top.cpp or under a project manager.
*) Test Kiface().IsSingle() when adding menus, some operations are not permitted
when running under a project manager and the KIWAY_PLAYER is pegged to a
specific project.
*) Implemented KIWAY::KiFACE() so it loads *.kiface files. They still have to be
in the same directory as the main *.exe launcher, so this presents some difficulty
when the binaries are not yet installed but rather the *.kiface files are still
in their original build directories. For today, I simply copied _pcbnew.kiface
to build/kicad/.
*) Add a test case to kicad/mainframe.cpp just to get an early peek at loading
_pcbnew.kiface under the C++ project manager. Got that working for one
specific invocation just for proof of concept. Surprise, it works.