There were a lot of plotters, exporters, etc. that were rolling their
own implementations.
This also introduces a lazily-built set of SHAPE objects for doing
collision detection and some forms of rendering (and later DRC).
Previously, all overlapping polygons (pads and min thickness areas to remove) were
merged.
Drawback: pads attributes are lost. In Gerber this is annoying.
Now the pads are plot as flashed or Regions items, and min thickness areas are added
but shapes are not merged and keep their attributes.
CHANGED: Settings are now stored in versioned sub-directories
ADDED: First-run dialog for migrating settings from a previous version
CHANGED: Settings are now stored as JSON files instead of wxConfig-style INI files
CHANGED: Color settings are now all stored in a separate settings file
CHANGED: The symbol editor and footprint editor now have their own settings files
CHANGED: Color settings are no longer exposed through BOARD object
CHANGED: Page layout editor now uses Eeschema's color scheme
Settings are now managed through a central SETTINGS_MANAGER held by PGM_BASE.
Existing settings will be migrated from the wxConfig format on first run of each application.
Per-application settings are now stored in one class for each application.
* Split up the thirdparty code into the thirdparty folder (#3637)
* Create a new kimath static library containing all the math functions
This is part of cleaning the build system for #1906.
The fracture routine introduces degenerate points that are healed by the
Clipper Polygon simplify command. This is normally fine but in the case
of hatched areas, there are thousands of degenerate points, which is
very slow in Clipper. Healing the degenerate points first before
simplifying and fracturing is much faster.
Fixes: lp:1847764
* https://bugs.launchpad.net/kicad/+bug/1847764
Previously, zones of the same net were merged for plotting,
regardless the fact the outline thickness can be different between the zones,
creating incorrect solid areas.
Fixes: lp:1840695
https://bugs.launchpad.net/kicad/+bug/1840695
This bug was seen only with some shapes, not all, and only for layers having a negative margin.
Fixes: lp:1831941
https://bugs.launchpad.net/kicad/+bug/
This places the arc approximation setting in the kicad_pcb file and uses
it for all parts of the board rendering where arcs are converted to
segments. This allows the user to customize their speed vs. accuracy
tradeoff. The default setting of maximum error of 0.005mm is acceptable
for small boards on moderate systems.
This removes the remaining hard-coded segments counts and replaces them
with the relative error calculation where the segments per arc is
determined by the maximum error we allow (smaller arcs = fewer segments)
This is mainly the solder paste layer that shows this issue.
This is due to the fact SHAPE_POLY_SET::Inflate does not work fine with polygons with linked holes.
SHAPE_POLY_SET::InflateWithLinkedHoles it added to fix this issue.
Fixes: lp:1828287
https://bugs.launchpad.net/kicad/+bug/1828287
Give the user the option of cancelling a file open if there are
segment zones; otherwise they're converted to polygon fills.
Fixes: lp:1823087
* https://bugs.launchpad.net/kicad/+bug/1823087
Allows 0 to 4 chamfered corners, not only one.
A custom shape allow this kind of shape. However because it is a primitive,
it is easier to edit and it support thermal reliefs.
Plotting mask layers, we expand by a minimum width before performing a
boolean add of the separate regions. The boolean add has a separation
condition that includes equality. Since we are looking for the
complement of the mask, we would like the equality applied to the other
side. Removing a unit value provides the separation.
Fixes: lp:1698457
* https://bugs.launchpad.net/kicad/+bug/1698457
The standard DIM() macro was not typesafe as it happily deferred errors
to runtime that can be caught at compile time. Replacing it with a
generic C++11 constexpr allows for typecasting, comparison and compile
time error checking.
m_Zone is a fully deprecated list of SEG_ZONE items (similar to TRACK), used to fill copper zones in *very old* boards.
it is even unlikely there are still boards that use them.
So it should be removed one day.
- support for background color setting
- removed several global config settings (such as g_Drc_On)
- wrapped most of global config settings in PCB_GENERAL_SETTINGS class
- reorganized PCB general options dialog to clearly mark which options concern only the legacy canvas
- new GAL feature for legacy users: double-click (or E) to change track width available as an option.
Fixes: lp:1530543
* https://bugs.launchpad.net/kicad/+bug/1530543
Fixes: lp:1707145
* https://bugs.launchpad.net/kicad/+bug/1707145
eeschema now supports arbitrary colors for all object types, and
pcbnew does in GAL canvas. When switching from GAL to legacy canvas,
pcbnew will convert colors to the nearest legacy color.
This option is not yet activated because the net attributes are not yet fully fixed by Ucamco, in Gerber file format specifications.
(To activate it, see dialog_plot.cpp, line 43)
In polygon calculations (combining polygons, fracture) the mode of calculation (fast or strictly simple polygon option) as no more a default value, because choosing the best mode is better to optimize the calculation time.
PAD_SHAPE_T and PAD_ATTR_T still have a double definition (new names and old names) to be sure python scripts are nor broken by the change.
PAD_DRILL_SHAPE_T does not have a double definition, because it is unlikely oblong holes are used in python scripts.
Double definitions will be removed in the (next) future.
This is due to the fact the boost::pylygon function resize ( a inflate/deflate function) used for calculations does not work with boost version >= 1.56.
Use Clipper inflate/deflate function instead. It is faster and works fine.
2) Change from legacy Cu stack to counting down from top=(F_Cu or 0).
The old Cu stack required knowing the count of Cu layers to make
sense of the layer number when converting to many exported file types.
The new Cu stack is more commonly used, although ours still gives
B_Cu a fixed number.
3) Introduce class LSET and enum LAYER_ID.
4) Change *.kicad_pcb file format version to 4 from 3.
5) Change fixed names Inner1_Cu-Inner14_Cu to In1_Cu-In30_Cu and their
meanings are typically flipped.
6) Moved the #define LAYER_N_* stuff into legacy_plugin.cpp where they
can die a quiet death, and switch to enum LAYER_ID symbols throughout.
7) Removed the LEGACY_PLUGIN::Save() and FootprintSave() functions.
You will need to convert to the format immediately, *.kicad_pcb and
*.kicad_mod (=pretty) since legacy format was never going to know
about 32 Cu layers and additional technical layers and the reversed Cu
stack.