eeschema now supports arbitrary colors for all object types, and
pcbnew does in GAL canvas. When switching from GAL to legacy canvas,
pcbnew will convert colors to the nearest legacy color.
bitmaps.h was included in nearly every file in the project due to it
being included by base_struct.h
Only about 130 files actually use the XPM definitions defined there, and
many of those already included bitmaps.h themselves, or via
menu_helpers.h. However, touching bitmaps.h would result in over 400
rebuilt files for pcbnew alone.
This commit moves the bitmap-related types like BITMAT_DEF out to a new
header, which is still included by base_struct.h, which is less
avoidable for now, it's it's used in the interface.
The icon list is still in bitmaps.h. This has the side effect that's
it's now easier to automatically generate this file.
Many classes in pcbnew and eeschema needed some functions moved
to the implementaitons from the headers too.
Some accessors should be const:
* IsFlipped
* GetRoundRectRadiusRatio
Returning a objects by value as const in these cases is not helpful, as
all it does is prevent the caller moving from the return value, it just
forces a copy.
Some of thse functions come from base class overrides, those haven't
been changed.
* ShapePos
* GetPadName
* GetPackedPadName
* Switched hashtables.h over to std::undordered_map from boost version.
* Added new macros DECL_VEC_FOR_SWIG() and DECL_MAP_FOR_SWIG() in macros.h.
These along with future DECL_HASH_FOR_SWIG() unify the declaration to swig
and C++ so that the resultant type name is common in both languages, and
the types AGREE.
* Fixed swigging of NETINFO_ITEM and NETINFO_LIST via magic.
* Newly exposed (python wrapped) are: D_PADS, TRACKS (was TRACK_PTRS),
NETNAME_MAP, NETCODE_MAP, wxString (without constructor purposely, read
comment in wx.i), MARKERS, ZONE_CONTAINERS, NETCLASSPTR, KICAD_T types.
* std::vector<SOMETHING*> tends to end up named SOMETHINGS in C++ and python.
Having the name consistent between like types is helpful, and between
languages. std::map<> ends up as SOMETHING_MAP.
* NETINFO_LIST::m_netNames and NETINFO_LIST::m_netCodes are now std::map
instead of hashtables, because swig does not yet support std::unordered_map.
* You can now get to any netclass or net info. NETNAMES_MAP and NETCODES_MAP
are traversable basically the same as a python dictionary using a python
string (not wsString) as the key! The wxString typemap converts python
string to wxString before the lookup happens. Iteration also works.
It should help if (or when) the internal angle unit used in kicad will be changed from 0.1 degree (a relic of code written for PCs without fpu) to degree ( a more natural unit).
PAD_SHAPE_T and PAD_ATTR_T still have a double definition (new names and old names) to be sure python scripts are nor broken by the change.
PAD_DRILL_SHAPE_T does not have a double definition, because it is unlikely oblong holes are used in python scripts.
Double definitions will be removed in the (next) future.
2) Change from legacy Cu stack to counting down from top=(F_Cu or 0).
The old Cu stack required knowing the count of Cu layers to make
sense of the layer number when converting to many exported file types.
The new Cu stack is more commonly used, although ours still gives
B_Cu a fixed number.
3) Introduce class LSET and enum LAYER_ID.
4) Change *.kicad_pcb file format version to 4 from 3.
5) Change fixed names Inner1_Cu-Inner14_Cu to In1_Cu-In30_Cu and their
meanings are typically flipped.
6) Moved the #define LAYER_N_* stuff into legacy_plugin.cpp where they
can die a quiet death, and switch to enum LAYER_ID symbols throughout.
7) Removed the LEGACY_PLUGIN::Save() and FootprintSave() functions.
You will need to convert to the format immediately, *.kicad_pcb and
*.kicad_mod (=pretty) since legacy format was never going to know
about 32 Cu layers and additional technical layers and the reversed Cu
stack.
- Converted the Next/Prev C casts to static casts and removed the type
unsafe ones
- Splitted as virtual the VIA::Flip member instead of using RTTI
- Heavily refactored the 'unconnected track' cleanup routine
- Misc constification
! The initial testing of this commit should be done using a Debug build so that
all the wxASSERT()s are enabled. Also, be sure and keep enabled the
USE_KIWAY_DLLs option. The tree won't likely build without it. Turning it
off is senseless anyways. If you want stable code, go back to a prior version,
the one tagged with "stable".
* Relocate all functionality out of the wxApp derivative into more finely
targeted purposes:
a) DLL/DSO specific
b) PROJECT specific
c) EXE or process specific
d) configuration file specific data
e) configuration file manipulations functions.
All of this functionality was blended into an extremely large wxApp derivative
and that was incompatible with the desire to support multiple concurrently
loaded DLL/DSO's ("KIFACE")s and multiple concurrently open projects.
An amazing amount of organization come from simply sorting each bit of
functionality into the proper box.
* Switch to wxConfigBase from wxConfig everywhere except instantiation.
* Add classes KIWAY, KIFACE, KIFACE_I, SEARCH_STACK, PGM_BASE, PGM_KICAD,
PGM_SINGLE_TOP,
* Remove "Return" prefix on many function names.
* Remove obvious comments from CMakeLists.txt files, and from else() and endif()s.
* Fix building boost for use in a DSO on linux.
* Remove some of the assumptions in the CMakeLists.txt files that windows had
to be the host platform when building windows binaries.
* Reduce the number of wxStrings being constructed at program load time via
static construction.
* Pass wxConfigBase* to all SaveSettings() and LoadSettings() functions so that
these functions are useful even when the wxConfigBase comes from another
source, as is the case in the KICAD_MANAGER_FRAME.
* Move the setting of the KIPRJMOD environment variable into class PROJECT,
so that it can be moved into a project variable soon, and out of FP_LIB_TABLE.
* Add the KIWAY_PLAYER which is associated with a particular PROJECT, and all
its child wxFrames and wxDialogs now have a Kiway() member function which
returns a KIWAY& that that window tree branch is in support of. This is like
wxWindows DNA in that child windows get this member with proper value at time
of construction.
* Anticipate some of the needs for milestones B) and C) and make code
adjustments now in an effort to reduce work in those milestones.
* No testing has been done for python scripting, since milestone C) has that
being largely reworked and re-thought-out.
Scripting: fix compatibility current pcbnew version in 2 examples and the default extension of board files in board.i (was .kicad_brd, now is .kicad_pcb)
D_PAD::GetNetname() and D_PAD::GetShortNetname() were moved to BOARD_CONNECTED_ITEM. Now they use the net name stored in NETINFO_ITEM.
Moved some one-line functions from class_board_connected_item.cpp to class_board_connected_item.h.
Added a copyright notice, moved Doxygen comments from class_board_connected_item.cpp to class_board_connected_item.h.
I have some doubts if changes introduced pcbnew/dialogs/dialog_pad_properties.cpp do not break anything, but I could not find a test case that breaks the pcbnew.
Performed tests:
- changed pad's net name from empty to existent - ok, name was changed
- changed pad's net name from empty to nonexistent - ok, error message is displayed, net name stays empty
- changed pad's net name from existent to empty - ok, net name became empty
- changed pad's net name from existent to nonexistent - ok, error message is displayed, net name is not changed
- (re)reading netlists, including net changes - fine, changes are applied, but empty nets are still kept
- loaded pcbnew/pcad2kicadpcb_plugin/examples/CK1202_V1.pcb to test P-CAD import plugin - ok, net names are correct
- imported an Eagle 6.0 board (Arduino Uno; http://arduino.cc/en/uploads/Main/arduino_Uno_Rev3-02-TH.zip) then saved in .kicad_pcb format and reloaded - ok, net names are correct
- saved demos/video/video.kicad_pcb in legacy format and then loaded it again - ok, net names are correct
Net codes are updated upon net list update. (BOARD::ReplaceNetlist())
Added in some places (mostly class_board.cpp) pad->SetNet() calls to synchronize net codes.
On creation of NETINFO_LIST, the first NETINFO_ITEM is added (the unconnected items net).
Removed COMPONENT_NET::m_netNumber, as it was not used anywhere.
Added an assert to D_PAD::GetNetname(), checking if net code and net name is consistent for unconnected pads. Added an assert for NETINFO_LIST::AppendNet() to assure that appended nets are unique.
It seems that at this point:
- Updating net lists works fine. The only difference between the file ouput is that after changes it contains empty nets as well.
- Nets are not saved in the lexical order. Still, net names and net codes are properly assigned to all items in the .kicad_pcb file. It is going to be addressed in the next commit. I believe it should not create any problems, as pads are sorted by their net names anyway (NETINFO_LIST::buildPadsFullList())
Performed tests:
- Created a blank PCB, saved as pic_programmer.kicad_pcb (from demos folder). Updated net lists. .kicad_pcb file (comparing to the results from master branch) differ with net order (as mentioned before), net codes and timestamps.
- Removed some of components from the above .kicad_pcb file and updated net lists. Modules reappeared. .kicad_pcb file differs in the same way as described above.
- Trying to change a pad net name (via properties dialog) results in assert being fired. It is done on purpose (as there is a call to GetNetname() and net name and net code do not match). This will not happen after the next commit.
- Prepared a simple project (starting with schematics). Imported net list, changed schematic, reimported net list - changes are applied.
- Eagle & KiCad legacy boards seem to load without any problem.
Pcbnew: Code cleaning and bug fix in autoplace functions
Dialog exchange footprints has now a separate button to update the .cmp file, only on request.
The plan goes like this:
- eeschema still uses int in decidegrees
- all the other things internally use double in decidegrees (or radians
in temporaries)
- in pcbnew UI the unit is *still* int in decidegrees
The idea is to have better precision everywhere while keeping the user with int i
angles. Hopefully, if a fractional angle doesn't come in from the outside, everything
should *look* like an integer angle (unless I forgot something and it broke)
When the time comes, simply updating the UI for allowing doubles from the user should
be enough to get arbitrary angles in pcbnew.