Move Loc, Rot types to inside piece.rs

This commit is contained in:
tali 2022-12-14 10:26:19 -05:00
parent c5ca155ad2
commit 2dc972c756
4 changed files with 52 additions and 128 deletions

View File

@ -1,11 +1,10 @@
#![no_std]
pub mod location;
pub mod matrix;
pub mod piece;
pub use location::Loc;
pub use matrix::Mat;
pub use piece::{Loc, Piece, Rot};
#[cfg(feature = "srs")]
pub mod srs;

View File

@ -1,110 +0,0 @@
//! Data structures and operations for representing piece locations and rotations.
/// Represents a location for a piece, including its orientation.
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
pub struct Loc {
/// Horizontal coordinate.
pub x: i16,
/// Vertical coordinate.
pub y: i16,
/// Rotation state.
pub r: Rot,
}
/// Represents a rotation state for a piece. The initial state is "north" (`N`), and there
/// are 4 total orientations to represent each 90 degree turn possible.
#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Debug, Default)]
#[repr(i8)]
pub enum Rot {
/// North. The initial state.
#[default]
N = 0,
/// Clockwise ("cw") from north.
E = 1,
/// Two rotations in any direction from north.
S = 2,
/// Counterclockwise ("ccw") from north.
W = 3,
}
impl From<i8> for Rot {
#[inline]
fn from(v: i8) -> Self {
unsafe { core::mem::transmute(v & 3) }
}
}
/// Represents a rotating operation. Includes 180 degree "flips", which are non-standard
/// for tetris but exist in many unofficial iterations of the game.
///
/// Rotations may be performed on [rotation states](Rot) using the [addition
/// operator](core::ops::Add).
///
/// ```
/// # use mino::location::{Rot, Spin};
/// assert_eq!(Rot::N + Spin::Cw, Rot::E);
/// ```
#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Debug)]
#[repr(i8)]
pub enum Spin {
/// Clockwise.
Cw = 1,
/// 180 degrees.
Flip = 2,
/// Counterclockwise.
Ccw = 3,
}
impl core::ops::Add<Spin> for Rot {
type Output = Rot;
fn add(self, r: Spin) -> Rot {
(self as i8).wrapping_add(r as i8).into()
}
}
impl core::ops::AddAssign<Spin> for Rot {
fn add_assign(&mut self, r: Spin) {
*self = *self + r;
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_angle_rotate() {
use Rot::*;
use Spin::*;
assert_eq!(N + Cw, E);
assert_eq!(N + Ccw, W);
assert_eq!(N + Flip, S);
assert_eq!(E + Cw, S);
assert_eq!(E + Ccw, N);
assert_eq!(E + Flip, W);
assert_eq!(S + Cw, W);
assert_eq!(S + Ccw, E);
assert_eq!(S + Flip, N);
assert_eq!(W + Cw, N);
assert_eq!(W + Ccw, S);
assert_eq!(W + Flip, E);
let mut r = N;
r += Ccw;
assert_eq!(r, W);
}
#[test]
fn test_angle_from_i8() {
let mut r = Rot::N;
for i in 0i8..=127 {
assert_eq!(r, i.into(), "i={i}");
r += Spin::Cw;
}
r = Rot::N;
for i in (-128i8..=-1).rev() {
r += Spin::Ccw;
assert_eq!(r, i.into(), "i={i}");
}
}
}

View File

@ -1,10 +1,43 @@
//! Data structures for representing pieces and shapes.
use crate::location::{Loc, Rot, Spin};
use crate::matrix::Mat;
use core::ops::Range;
/// Represents a location for a piece, including its orientation.
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
pub struct Loc {
/// Horizontal coordinate.
pub x: i16,
/// Vertical coordinate.
pub y: i16,
/// Rotation state.
pub r: Rot,
}
/// Represents a rotation state for a piece. The initial state is "north" (`N`), and there
/// are 4 total orientations to represent each 90 degree turn possible.
#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Debug, Default)]
#[repr(i8)]
pub enum Rot {
/// North; the initial state.
#[default]
N = 0,
/// East; clockwise ("cw") from north.
E = 1,
/// South; two rotations in any direction from north.
S = 2,
/// West; counterclockwise ("ccw") from north.
W = 3,
}
impl From<i8> for Rot {
#[inline]
fn from(v: i8) -> Self {
unsafe { core::mem::transmute(v & 3) }
}
}
/// Interface for representations of shapes in the abstract, not tied to any particular
/// position or orientation.
pub trait Shape<'c> {
@ -128,17 +161,6 @@ impl<'c, S: Shape<'c>> Piece<S> {
cells.translate(self.loc.x, self.loc.y);
cells
}
/// Translates this piece by the given amount in both directions.
pub fn translate(&mut self, dx: i16, dy: i16) {
self.loc.x = self.loc.x.checked_add(dx).expect("overflow/underflow");
self.loc.y = self.loc.y.checked_add(dy).expect("overflow/underflow");
}
/// Rotates this piece in the given direction.
pub fn rotate(&mut self, dr: Spin) {
self.loc.r += dr;
}
}
#[cfg(test)]
@ -149,6 +171,20 @@ mod test {
use alloc::vec::Vec;
use core::ops::RangeInclusive;
#[test]
fn test_angle_from_i8() {
let rots = core::iter::repeat([Rot::N, Rot::E, Rot::S, Rot::W]).flatten();
let ints = 0i8..=127;
for (i, r) in ints.zip(rots) {
assert_eq!(r, i.into(), "fwd,i={i}");
}
let rots = core::iter::repeat([Rot::W, Rot::S, Rot::E, Rot::N]).flatten();
let ints = (-128i8..=-1).rev(); // -1,-2,...,-128
for (i, r) in ints.zip(rots) {
assert_eq!(r, i.into(), "bwd,i={i}");
}
}
// .X.
// .XX origin at (1,1)
// ...

View File

@ -1,7 +1,6 @@
//! Implementation of SRS shapes and movement quirks.
use crate::location::Rot;
use crate::piece::{Cells, Shape as GenericShape};
use crate::piece::{Cells, Rot, Shape as ShapeTrait};
mod code_gen {
include!(concat!(env!("OUT_DIR"), "/srs.rs"));
@ -19,7 +18,7 @@ pub enum Shape {
Z = code_gen::shape_indices::Z as u8,
}
impl GenericShape<'static> for Shape {
impl ShapeTrait<'static> for Shape {
fn cells(&self, r: Rot) -> Cells<'static> {
let i = (*self as usize) * 4 + r as usize;
let xs = code_gen::extents::X0[i]..code_gen::extents::X1[i];
@ -35,7 +34,7 @@ pub type Piece = crate::piece::Piece<Shape>;
#[cfg(test)]
mod test {
use super::*;
use crate::location::Loc;
use crate::piece::Loc;
use alloc::vec::Vec;
use core::ops::Range;