Add more symbolic identifiers, and rename some of the existing names for
access to SIGMA sample memory. This eliminates magic numbers and reduces
redundancy and potential for errors during maintenance.
This commit also concentrates DRAM layout related declarations in the
header file in a single location, which previously were scattered, and
separated registers from their respective bit fields.
Extend comments on the difference of events versus sample data.
Move the FPGA commands (which can access registers, and sample memory)
declarations before the register layout declaration. Which then no
longer separates the registers declarations from their bit fields.
Update comments on the register set while we are here.
Eliminate a few magic numbers in FPGA commands, use symbolic identifiers
for automatic register address increments, and DRAM access bank selects.
Improve grouping of related declarations in the header file.
Slightly rephrase and comment on the FPGA configuration of the ASIX
SIGMA logic analyzer. Use symbolic pin names to eliminate magic numbers.
Concentrate FPGA related comments in a single spot, tell the Xilinx FPGA
from FTDI cable (uses bitbang mode for slave serial configuration).
This fixes typos in the PROG pulse and INIT check (tests D5 and comments
on D6). Also removes the most probably undesired 100s timeout in the
worst case (100M us, 10K iterations times 10ms delay). Obsoletes labels
for error paths. Drops a few empty lines to keep related instruction
blocks together. Includes other style nits.
Stick with the FTDI library for data acquisition, and most of all for
firmware upload (bitbang is needed during FPGA configuration). Removing
this dependency is more complex, and needs to get addressed later.
Re-use common USB support during scan before open, which also allows to
select devices if several of them are connected. Either of "conn=vid.pid"
or "conn=bus.addr" formats are supported and were tested.
This implementation detects and displays SIGMA and SIGMA2 devices. Though
their function is identical, users may want to see the respective device
name. Optionally detect OMEGA devices, too (compile time option, off by
default), though they currently are not supported beyond detection. They
just show up during scans for ASIX logic analyzers, and users may want to
have them listed, too, for awareness.
This implementation also improves robustness when devices get disconnected
between scan and use. The open and close routines now always create the
FTDI contexts after the code has moved out of the scan phase, where common
USB support code is used.
This resolves bug #841.
Eliminate an unnecessary magic number for the maximum filename length of
SIGMA netlists. Use a more compact source code phrase to "unclutter" the
list of filenames and their features/purpose. Move the filesize limit to
the list of files to simplify future maintenance.
Introduce a text to number conversion routine which is more general than
sr_atol() is. It accepts non-decimal numbers, with optional caller given
or automatic base, including 0b for binary. It is not as strict and can
return the position after the number, so that callers can optionally
support suffix notations (units, or scale factors, or multiple separated
numbers in the same text string).
Address style, robustness, and usability nits in the common endianess
conversion helpers in the libsigrok-internal.h header file. Rephrase
preprocessor macros as static inline C language functions to eliminate
side effects, and improve data type safety. Provide macros under the
previous names for backwards compatibility, so that call sites can
migrate to the routines at their discretion (or not at all).
Performance is not affected. Inline routines are identically accessible
to compiler optimizers as preprocessor macros with their text expansion
are. Resulting machine code should be the same.
Introduce variants which also increment the read or write position in
the byte stream after data transfer. This reduces more redundancy at
call sites.
The UT32x driver requires a user spec for the connection. The device
cannot get identified, that's why successful open/close for the port
will suffice. Lack of an input spec as well as failure in the early
scan phase will terminate the scan routine early.
When we reach the end of the scan which creates the device instance
and registers it with the list of found devices, the port already
is closed and the list of devices will never be empty. Remove the
redundant close call and the dead branch which frees the serial port.
src/hardware/siglent-sds/protocol.c: In function 'siglent_sds_get_digital':
src/hardware/siglent-sds/protocol.c:382:35: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
if (data_low_channels->len <= samples_index) {
^
src/hardware/siglent-sds/protocol.c:391:36: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
if (data_high_channels->len <= samples_index) {
^
src/hardware/siglent-sds/protocol.c:417:32: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
for (long index = 0; index < tmp_samplebuf->len; index++) {
^
In file included from src/hardware/siglent-sds/protocol.c:37:0:
src/hardware/siglent-sds/protocol.c: In function 'siglent_sds_receive':
src/hardware/siglent-sds/protocol.h:28:20: warning: format '%li' expects argument of type 'long int', but argument 3 has type 'uint64_t {aka long long unsigned int}' [-Wformat=]
#define LOG_PREFIX "siglent-sds"
^
./src/libsigrok-internal.h:815:41: note: in expansion of macro 'LOG_PREFIX'
#define sr_dbg(...) sr_log(SR_LOG_DBG, LOG_PREFIX ": " __VA_ARGS__)
^
src/hardware/siglent-sds/protocol.c:564:6: note: in expansion of macro 'sr_dbg'
sr_dbg("Requesting: %li bytes.", devc->num_samples - devc->num_block_bytes);
^
src/hardware/siglent-sds/protocol.c: In function 'siglent_sds_get_dev_cfg_horizontal':
src/hardware/siglent-sds/protocol.h:28:20: warning: format '%lu' expects argument of type 'long unsigned int', but argument 3 has type 'uint64_t {aka long long unsigned int}' [-Wformat=]
#define LOG_PREFIX "siglent-sds"
^
./src/libsigrok-internal.h:815:41: note: in expansion of macro 'LOG_PREFIX'
#define sr_dbg(...) sr_log(SR_LOG_DBG, LOG_PREFIX ": " __VA_ARGS__)
^
src/hardware/siglent-sds/protocol.c:933:2: note: in expansion of macro 'sr_dbg'
sr_dbg("Current memory depth: %lu.", devc->memory_depth_analog);
^
There are cases where the connect() call returns EBUSY when trying to
connect to a device. This has been observed when sampling an RDTech
UM24C. In this case, scanning the device works fine. However, when
sampling the device, Sigrok first scans the device, then closes the
connection and re-opens it to sample the device. If the close/open
calls happen in close successions, the Bluetooth stack sometimes
returns EBUSY.
Work around this issue by retrying if the connect() returns EBUSY.
Signed-off-by: Andreas Sandberg <andreas@sandberg.pp.se>
Since the device should be closed after the scan, close it in sr_modbus_scan.
Alternatively, every single driver could close the device after calling
sr_modbus_scan. This causes duplicated code, is prone to forgetting it and it
wasn't the calling driver who opened the device in the first place.
This change unbreaks maynuo-m97 and rdtech-dps.
Changing triggers (e.g. from low to high) would sometimes cause the
acquisition to seemingly "hang" due to missing variable initializations
(in reality the device would wait for incorrect triggers and/or on
incorrect channels).
This fixes bug #1535.
Prefer the common conversion helper for little endian 16bit signed data.
The previous local implementation only worked for positive values, and
yielded incorrect results for negative temperatures.
This fixes bug #1463.
src/resource.c:414: warning: unbalanced grouping commands
conversion.c:81: warning: argument 'lo_thr' from the argument list of sr_a2l_schmitt_trigger has multiple @param documentation sections
src/analog.c:611: warning: return value 'SR_ERR_ARG' of sr_rational_div has multiple documentation sections
src/device.c:205: warning: explicit link request to 'TRUE' could not be resolved
src/device.c:205: warning: explicit link request to 'FALSE' could not be resolved
src/device.c:231: warning: explicit link request to 'TRUE' could not be resolved
src/device.c:231: warning: explicit link request to 'FALSE' could not be resolved
src/serial.c:246: warning: explicit link request to 'NULL' could not be resolved
src/strutil.c:602: warning: explicit link request to 'NULL' could not be resolved
src/device.c:94: warning: unable to resolve reference to 'sr_channel_free()' for \ref command
src/strutil.c:597: warning: unable to resolve reference to 'sr_hexdump_free()' for \ref command
src/strutil.c:622: warning: unable to resolve reference to 'sr_hexdump_new()' for \ref command
src/device.c:430: warning: The following parameters of sr_dev_inst_channel_add(struct sr_dev_inst *sdi, int index, int type, const char *name) are not documented: parameter 'sdi'
src/session.c:163: warning: The following parameters of fd_source_new(struct sr_session *session, void *key, gintptr fd, int events, int timeout_ms) are not documented: parameter 'events'
Since we've now seen lots of devices in the wild that come with the
"HCS-" prefix in the ID, it's probably safe to assume all of them
could have it.
This fixes bug #1530.
The previous implementation got stuck in an infinite loop when data
acquisition started, but the device got disconnected before the data
acquisition terminates. An implementation detail ignored communication
errors, and never saw the expected condition that was required to
continue in the sample download sequence. Unbreak that code path.
Even though the devices/websites/manuals usually say 0..30V, the
hardware actually accepts up to 31V, both via serial as well as by
simply rotating the knob on the device (and our driver already
reflects that).
The same is true for current, it's usually 0..5A as per docs, but many
(probably all) devices accept 5.1A via serial and knob.
Thus, set the max current of all devices to 5.1A (or 3.1A for 3A
devices). We're assuming they all have this property, and we've seen
this in practice on at least three different versions of the device.
On a recently acquired Korad KA3005P power supply, the ID supplied by the
device is not known by libsigrok.
$ sigrok-cli --driver=korad-kaxxxxp:conn=/dev/ttyACM0 --scan
sr: korad-kaxxxxp: Unknown model ID 'KORAD KA3005P V4.2' detected, aborting.
This fixes bug #1522.
Thanks to bitaround@gmail.com for the amperage fix.