I've seen the following output from sigrok-cli:
CH1: 478.720 mV
CH1: -514 mV
CH1: -0 V
I added some debug, and it seems like the digits value isn't reset
to the actual value after calling sr_analog_si_prefix_friendly():
using 6 digits
value2 0.478720 digits 6
value2 -0.513536 digits 3
value2 -0.487424 digits 0
This commit fixes this by resetting the value to the actual value before.
Signed-off-by: Sven Schnelle <svens@stackframe.org>
devc->step is not reset on acquistion start, so acquisition
starts with a different value every time. Thats annoying when
using the demo driver to debug sigrok, so lets make sure that
it's reset to 0.
Signed-off-by: Sven Schnelle <svens@stackframe.org>
It appears that the symmetry changes of setting CC and CFLAGS correctly
for C code compilation in commit 104f02f broke things for people using
some other version of setuptools which uses those vars instead of
CXX and CXXFLAGS when compiling C++ code. In order to make this work
everywhere, set _both_ sets of variables as required for C++ compilation.
No C code is compiled by the python binding module anyway.
When using SCPI over serial (over USB), we want the header without waiting
for the terminating newline, as otherwise the transfer may time out.
sr_scpi_get_data() will block until the message is complete.
Lowlevel access functions should not alter the data. sr_scpi_get_string(),
which is called by most highlevel access functions, strips newlines
in a central place, and is only fed with data which contains newlines
as a final terminator.
IEEE 488.2 definite length blocks may contain arbitrary data, thus the
payload up to the provided length should be passed unaltered.
Track if the last received character is a newline, which can be used
by sr_scpi_get_string() and its callers to determine if the response
is complete.
g_get_monotonic_time() returns current time in microseconds, use the same
granularity for storing the read timeout.
There is also no need to check the timeout if data has just been read.
sr_period_string takes the frequency as its argument, i.e. the reciprocal
of the timebase. Obviously this will not work for frequencies less than
1Hz / timebases greater than 1 second, but at least is correct for all
other available timebases.
sr_period_string takes the frequency as its argument, i.e. the reciprocal
of the timebase. Obviously this will not work for frequencies less than
1Hz / timebases greater than 1 second, but at least is correct for all
other available timebases.
The output was wrong for all frequencies but 1 Hz, 1 kHz, 1 MHz and 1 GHz.
With this changes, the output may still be off due to rounding, but will
be correct as to the shown accuracy.