The SCPI standard specifies the "*OPC?" command (Operation complete query) which
queries the instrument for its operative state. When all pending operations are
complete, the instrument responds with a "1".
Some manufacturers block before completing all operations and don't respond
with anything and some of them respond with a "0". This function handles both
cases uniformly.
This patch adds helper functions to read an SCPI response and parse the response
as an integer, boolean, floating-point or double-precision floating-point number.
The Standard Commands for Programmable Instruments (SCPI) defines a standard
for syntax and commands to use in controlling programmable test and measurement
devices.
SCPI documentation:
http://www.ivifoundation.org/docs/scpi-99.pdf
This patch adds helper functions for sending SCPI commands, reading a SCPI
response and reading and parsing a SCPI "*IDN?" response.
The fields of this structure should not be used directly by frontends
(and none of the current ones do). Thus, make the struct opaque and hide
its contents from the API.
Disable drivers that need serial port support if libserialport is not found.
Also, disable building various other serial port related code in that case.
FreeBSD's libusb-1.0 compatible library has a few differences compared
to the "normal" libusb-1.0 from libusb.org which we have to work around.
LIBUSB_CLASS_APPLICATION doesn't exist in FreeBSD's libusb, and
libusb_handle_events_timeout_completed() doesn't exist either.
The latter is basically libusb_handle_events_timeout() with an extra
(unused by us) parameter, so the workaround is relatively simple.
This fixes bug #185.
This extends the session file format to contain logic data files named
either "logic-1" as before, or "logic-1-1", "logic-1-2", ...
representing chronologically ordered chunks of captured data.
The chunks are transparently concatenated together by sr_session_load().
This DMM is not using the standard bits in the FS9922 protocol/structure
to indicate the "volt" and "diode mode" flags. Instead, it only sets the
user-defined bit "z1" to indicate both "diode mode" and "volt".
This fixes#142.
The per-driver API calls no longer have a hw_ prefix (e.g. hw_init()
became init() and so on), so drop the 'hw_' from the std versions
for those API callbacks too.
Use the same functions and structs as the other DMM protocol parsers
in hardware/common/dmm. Among other things, this allows the functions
to be used from drivers in a generic way, e.g. in serial-dmm, uni-t-dmm,
and possibly other drivers.
With the sigrok session running in a worker thread, if sr_session_stop is called
from another thread, it shuts down the pollfds used by the hardware drivers,
without ensuring that the sigrok event loop is no longer using those pollfds.
On the demo driver, this involves shutting down the GIOChannels, causing a
segfault when the sigrok event loop tries to use them. This is evident when
using the Stop button in PulseView, while the session is running.
This isn't a problem with just the demo driver; any driver's resources may be
freed by sr_session_stop concurrently with the sigrok session running.
To solve this problem, we don't touch the session itself in sr_session_stop().
Instead, we mark it for decommissioning and return. The session polls this flag,
and shuts itself down when requested.
This fixes bug 4.
Signed-off-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
sr_config_get() provides a GVariant owned by the caller, so it must be
released with g_variant_unref() when done.
sr_config_set() takes a GVariant from the caller which may be floating;
it will be properly sunk and release after use by this function. Thus
the output of g_variant_new_*() may be used as an argument.
sr_config_list() also provides a GVariant owned by the caller, to be
unreferenced when done.
sr_config_make() can take a floating reference.
This is a small helper function which sends the SR_DF_HEADER packet that
drivers usually emit in their hw_dev_acquisition_start() API callback.
It simplifies and shortens the hw_dev_acquisition_start() functions
quite a bit.
It also simplifies the input modules which send an SR_DF_HEADER packet, too.
This patch also automatically removes some unneeded malloc/free in some
drivers for the 'packet' and 'header' structs used for SR_DF_HEADER.
This patch marks packet structures and their payloads as const.
This indicates to packet receivers that modifications to these are
not allowed. In general all pointers should be marked const unless
modification of the referenced data is explicitly allowed.
The rs9lcd parser, which is used for the RadioShack 22-812 does not use its
*info parameter, and therefore did not have a rs9lcd_info struct declared.
With recent re-factoring of the receive data callbacks, it became necessary to
pass a struct pointer. This made the RECV_DATA macro look like:
- RECV_DATA(RADIOSHACK_22_812, metex14)
giving the wrong impression that the RadioShack 22-182 uses the
metex14 protocol, which is not the case.
Create a dummy rs9lcd_info struct, and correctly identify the parser
as rs9lcd in the RECV_DATA macro:
+ RECV_DATA(RADIOSHACK_22_812, rs9lcd)
Signed-off-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
Use the infrastructure of serial-dmm to handle the RadioShack 22-812,
and completely remove radioshack-dmm.
Signed-off-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
Move the parsing part of radioshack-dmm into a separate protocol
parser, following the model from hardware/common/dmm.
Signed-off-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
Options in addition to the usual "9600/8n1" syntax start with a
slash, and take the form of key=value, where different options are
also separated by slashes. For example:
"9600/8n1/rts=0/dtr=1"
This sets RTS low and DTR high.
ols driver used to probe a series of available serial ports obtained
by regexp matching of common serial port names.
There are a number of problems with this approach:
1. It will probe all serial devices, including devices that do not
like to be probed, potentially causing them to act up.
2. It will try to probe serial ports which may already be opened in
other applications for other purposes.
3. It assumes the naming of the serial ports is set in stone, and
creates an unnecessary OS-specific list.
4. It produces unnecessary debug output even when an OLS device is
not connected.
5. etc...
Do not implicitly probe serial ports. Only probe the port specified
by the frontend, if any; otherwise, just quit.
Also get rid of all functionality in serial.c which was designed
specifically for random probing.
Signed-off-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
Move sr_usb_connect() and sr_usb_open() to hardware/common/usb.c in a
slightly more generic form and add more error checks and logging.
Let genericdmm use the new/moved functions.
Merge parts of the tekpower-dmm code (the chip of the TekPower
TP4000ZC seems to be an FS9721_LP3 too) and rework parts of the functions.
Adapt the tekpower-dmm and uni-t-dmm code accordingly.
The Fortune Semiconductor FS9721_LP3 and FS9721B/Q100 DMM chips are very
similar and the protocol looks identical.
Tested on a Voltcraft VC-820 (FS9721_LP3) with the uni-t-dmm driver
(needs some small changes, tbd).
There is no point in libsigrok copying probe lists around. The driver now
builds a list of probes according to the model device it found, and will
make that available to a frontend. The frontend thus has a reference of
what the driver has, including default names, and doesn't need libsigrok
to provide an unnecessary level of abstraction.
The sr_probe_new() library-private function is a helper for drivers.
All frontends will have to include <libsigrok/libsigrok.h> from now on.
This header includes proto.h and version.h, both installed from the
distribution into $INCLUDE/libsigrok/ as well.
The only dynamically changed header is now version.h, which has both
libsigrok and libtool compile-time versions in it.