Introduce the lcr/vc4080.c source file which implements the parser for
the serial data stream of the Voltcraft 4080 LCR meter. Add the meter to
the list of supported devices in the serial-lcr driver, as well as the
PeakTech 2165 LCR meter which is another compatible device.
This implementation contains a workaround for USB based serial cables
which seem to suffer from incomplete parity handling (observed with the
FT232R based PeakTech cable). Similar approaches were seen in existing
DMM drivers.
This implementation supports the main and secondary displays. The D and Q
"displays" which are communicated in the serial packets appear unreliable
and redundant, users can have the D and Q values shown in the supported
displays.
Commit cb5cd1538f introduced packet request support in the serial-lcr
device driver. Calls were added to the detection of the device's
presence, and the periodic acquisition of measurement data. Add another
call to the device configuration retrieval that follows the presence
detection, without it communication timed out with no data received.
Also slightly raise the timeout for this device configuration gathering
phase. With one second sharp, the VC4080 was detected, but getting its
current configuration kept failing. This device's serial communication
is extra slow (1200 bps) and the packets are rather large (39 bytes).
Which made the stream detect's receive routine stop checking for the
availability of more data while a packet was being received.
Move the initial device probe (LCR packet validity check), the creation
of the device instance after successful probe, and the subsequent packet
inspection after resource allocation out of the scan routine. This shall
improve readability of the serial-lcr driver's probe logic, and reduces
diffs when handling of multiple connections gets added later.
Add a developer comment, the serial-lcr driver needs to handle multiple
connections when the conn= spec is ambiguous (multiple cables of the
same type, with the same VID:PID).
According to the latest available version of the manual, as
for the RTB2000 and RTM3000 series, the RTA4000 series also
uses a slightly different dialect than other previously
supported models, in particular when it comes to the POD
(logic channel groups) handling.
I do not have such model available for testing therefore, as
for the RTB2000 and RTM3000 support recently introduced, I do
not know whether or not the RTA4000 also understands the
existing dialect. In doubt, the new official dialect is
implemented by this patch.
According to the latest available version of the manual, they
both use a slightly different dialect than currently supported
models, in particular when it comes to the POD (logic channel
groups) handling.
I do not have any of the above models available for testing
therefore I do not know whether or not they also understand
the existing dialect. In doubt, the new official dialect is
implemented by this patch.
Update the oscilloscope state with new settings only after
they have been successfully stored in the device to avoid
an inconsistent state in case of SCPI SET command failure.
The hameg-hmo driver returns an incorrect sample rate: to reproduce this
bug, set the maximum sample rate from the ACQUIRE menu.
This patch fixes the driver so that the correct sample rate is returned.
During the initial configuration phase of the hameg-hmo driver
only send an OPC command if a SCPI command has been previously
sent to the device so that bogus SCPI timeouts are avoided.
The current starting index for the POD name is currently wrong as it is zero.
The official POD numbering starts instead at 1 (see device panel, buttons
and manual), so the current index used for message printing and groups
naming in the driver needs to be incremented by one.
Avoid double memory freeing leading to segmentation fault in when a SCPI
command fails to get a string due conditions such as a timeout or an invalid
command.
When setting the type of slope for the edge trigger function, also set the
trigger type to edge because it is not necessarily configured that way and
therefore such functionality might fail to work properly!
This fixes parts of bug #1328.
Update the Hameg/Rohde&Schwarz HMO driver (hameg-hmo) so that it
is possible to configure the logic threshold for digital signals.
The user can get or set the logic threshold configuration using
the channel group POD0 (and/or POD1 where available), for example:
sigrok-cli --driver hameg-hmo --get logic_threshold -g POD0
sigrok-cli --driver hameg-hmo --config logic_threshold=TTL --set -g POD0
sigrok-cli --driver hameg-hmo --get logic_threshold_custom -g POD0
sigrok-cli --driver hameg-hmo --config logic_threshold_custom=0.7 --set -g POD0
Update the default serial port options for Rohde&Schwarz and
Hameg mixed-signal oscilloscope devices connected through USB.
Also, remove misplaced and unused serial port configuration option.
This patch complements fa3d104f17
in terms of updating the USB PIDs for new devices (HMO series).
This fixes parts of bug #1321.
At the moment only the maximum number of frames to be acquired can be
configured for the Hameg/Rohde&Schwarz HMO mixed-signal oscilloscope
series driver (hameg-hmo).
This patch adds support to configure the number of samples to acquire
in both analog and digital (logic) mode.
This patch introduces the support for 16 digital (logic) channels for the
following oscilloscope models: HMO3032, HMO3042, HMO3052 and HMO3522
(previously only 8 digital channels were supported, i.e. only 1 POD).
This patch takes care of removing an invalid product model (HMO2522)
and adds a missing product model (HMO3522) in the hameg-hmo driver,
thus extending the number of supported oscilloscope models.
This fixes bug #1322.
The trigger range/mask "compression" procedure is apparently not
required and breaks triggering on a low line state.
This has been verified to fix the issue on a Hantek 4032L with FPGA
version 0x4303. It is possible that the procedure mentioned above
might be required for other FPGA versions, though that is unknown.
If you experience trigger issues with other FPGA versions, please
contact us for further debugging and testing.
This fixes bug #1402.
Some meters require the reception of a request before they provide
acquisition data. Add support for the chip driver's .packet_request()
routine, and timeout handling in the serial-lcr driver. This follows
the serial-dmm model.
Allow LCR chip drivers to specify custom printf() formats for their
channel names. Default to "P1" etc in the absence of format specs.
This implementation is similar to serial-dmm.
Bug #1390 reports that "!desc" is always true (should be: false?). But
the actual problem would be that 'desc' is _not_ NULL when none of the
supported chips' VID:PID matched (FT232H happens to "get found" then,
erroneously).
Add a sentinel to the table of supported chips, such that 'desc' becomes
NULL upon mismatch, and the error path is entered.
The serial-dmm entry for Victor DMMs is able to communicate to either
geniune COM ports (RS232 or USB CDC) or the obfuscating USB HID cables.
The victor-dmm driver became obsolete and was removed. Rename the
serial-dmm entry, remove the no longer needed "-ser" suffix. Suggest a
default connection via the obfuscating USB HID cable, accept user
provided overrides for regular serial cables (same behaviour as before,
connection spec for serial ports keeps being mandatory).
Remove the victor-dmm device driver. Its functionality is contained in
the Victor specific serial-over-HID transport, the FS9922 DMM parser,
and the serial-dmm device driver. The additional implementation became
obsolete.
This undoes the essence of commit bf700f679a, which introduced the
default conn= spec. Which improved usability: Users just select the
device and need not specify the connection. But also resulted in the
UT32x thermometer driver's probe to "succeed" as soon as the WCH CH9325
chip was found, no data check was involved in the scan. Unfortunately
this chip is also used in the popular UT-D04 cable, and thus there were
many false positives.
Remove the src/hardware/brymen-bm86x/ hierarchy of source files. Its
functionality has moved to the bm86x packet parser and the serial-dmm
device driver.
Request packets from the Brymen BM86x meter much faster. The previous
implementation in the separate driver used to immediately send another
request when a measurement arrived, with a 10ms granularity in the poll
routine, and a 500ms timeout between requests.
Considering the meter's update rate, stick with the 500ms timeout, but
increase the maximum request rate to 10 per second, with a minimum of 2
per second. This receives measurement data at the meter's capability
(compare DC and AC modes, seems to automatically adjust to the internal
operation, and match the display update rate).
Move Brymen BM86x specific packet parse logic to a new src/dmm/bm86x.c
source file, and register the routines with the serial-dmm driver's list
of supported devices. Which obsoletes the src/hardware/brymen-bm86x/
hierarchy.
This implementation differs from the previous version: The parse routine
gets called multiple times after one DMM packet was received. Values for
the displays get extracted in separate invocations, the received packet
is considered read-only. Unsupported LCD segment combinations for digits
get logged. Low battery gets logged with higher severity -- the validity
of measurement values is uncertain after all. The parse routine uses
longer identifiers. Packet reception uses whichever serial transport is
available (need no longer be strictly USB HID nor libusb based). All
features of the previous implementation are believed to still be present
in this version.
This configuration queries measurement values each 0.5 seconds and
re-sends a not responded to request after 1.5 seconds. Which follows the
combination of the vendor's suggested flow (frequency) and the previous
implementation's timeout (3x 500ms). This implementation does not try to
re-connect to the HID device for each measurement, and neither checks
for the 4.0 seconds timeout (vendor's suggested flow). Local experiments
work without these.
The src/hardware/brymen-bm86x/ source code contains specific support for
the Brymen BM86x devices, and directly depends on the libusb library.
Rename the registered device (append the "-usb" suffix) before adding
BM86x support to the serial-dmm driver.
Some meters which are supported by the serial-dmm driver don't strictly
require the user's COM port specification. When a known (usually bundled,
or even builtin) cable type is used, we can provide a default conn= spec
and thus improve usability. Prepare the DMM_CONN() macro, accept user
overrides.
The 'conn' field in the device context and the CONN values in the
declarations of supported DMM models seemed inappropriate. They specify
the communication parameters (UART frame format and bitrate), not the
connection (port name). Adjust the respective identifiers.
Also rephrase the evaluation logic. Instead of checking for the absence
of user specs and optionally assigning a fallback value, just preset
from defaults and override from user specs when present. This simplifies
the logic (eliminates a check).
Keep the ES51919 chip support in the src/lcr/ directory, and move device
driver specific code to the src/hardware/serial-lcr/ directory. Implement
the same driver layout for LCR meters as is used for DMM devices.
This also addresses a few issues in the serial-lcr driver: Unbreak --get
and --show, do process a few LCR packets after probing the device, to
gather current parameter values. Keep sending meta packets when these
parameters change during acquisition, like the previous implementation
did. Use common code for frame/time limits.
Note that although LCR meters usually operate with AC to classify L/C/R
components, one of the officially supported modes is DC resistance.
Which means that an output frequency of 0 is not just a fallback when
packet parsing fails, it's also a regular value of the freq parameter.
List all supported frequencies including DC in strict numerical order.
Although all currently supported devices use the same ES51919 chip, the
implementation is prepared to support other devices which use different
LCR meter chips as well. The list of known equivalent circuit models and
output frequencies is kept in src/lcr/ chip support. It's assumed that
one LCR packet communicates the data for all channels/displays similar
to the serial-dmm driver implementation.
The serial communication timing parameters during probe get determined
from earlier serial port configuration, which obsoletes the redundant
'baudrate' parameter, and eliminates potential inconsistency between
user specified parameters and builtin default values.
The serial communication timing parameters during probe get determined
from earlier serial port configuration, which obsoletes the redundant
'baudrate' parameter, and eliminates potential inconsistency between
user specified parameters and builtin default values.
The serial_stream_detect() routine needs to estimate the time which is
needed to communicate a given amount of data. Since the serial port got
opened and configured before, the serial communication parameters are
known, and callers need not redundantly specify the bit rate.
Register another driver for the UNI-T UT612 LCR meter, which is based on the
ES51919/ES51920 chipset, too. This device had been usable before when the
internal UART connection was made accessible (read: with a hack). It became
officially supported in unmodified form with the addition of transparent
serial over HID support for SiLabs CP2110 chips.
Switch the UT32x driver from running specific USB transfers to generic
serial communication. Preset the bitrate and frame format, but allow for
user specified overrides as well. Default to the WCH CH9325 HID chip,
but allow for overrides or more specific selection so that users can
resolve ambiguities with multiple cables.
The switch from libusb to hidapi removes a limitation that specifically
was reported for the Mac platform. The serial-over-HID variant should
now work as well. See bug #555.
Drop the background transfers. Stick with a local acquisition stop
routine, because a STOP request needs to get sent to the device. Reduce
the receive buffer size such that either blocking or non-blocking calls
will work. The additional flexibility of the buffer handling and packet
processing does not harm.
Eliminate a direct libserialport dependency in the OLS device driver.
Use libsigrok's internal serial layer's API instead to check for the
availability of receive data.
The rohde-schwarz-sme-0x device driver used to unconditionally reference
a libserialport header file. Remove that reference, it's not needed in
this specific driver.
Don't exit with an error if the FPGA is detected as unsupported.
Just issue a warning with the detected version and continue. I have such
a clone and it works with the original Saleae software and with sigrok
despite the fact that its FPGA version is 0xff.
Their commands are very similar to the U123x series, they just
add some more modes and the second channel. So use the re-functions
and just extend them where necessary.
Log reading not supported yet.
Basic testing done with a U1272A.
- fix the resolution of the CONF?-response:
the resolution is given with 6 decimal places
(instead of 8) like this:
VOLT +5.000000E+00,+1.000000E-04
- add more measurement modes that are possible with the meter:
CONT,COND,TEMP,PULS
src/hardware/sysclk-sla5032/protocol.c: In function ‘la_start_acquisition’:
src/hardware/sysclk-sla5032/protocol.c:244:8: warning: implicit declaration of function ‘max’ [-Wimplicit-function-declaration]
pre = max(pre, 2);
^~~