kicad/pcbnew/exporters/export_vrml.cpp

1902 lines
58 KiB
C++
Raw Normal View History

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2009-2013 Lorenzo Mercantonio
* Copyright (C) 2014-2017 Cirilo Bernardo
* Copyright (C) 2018 Jean-Pierre Charras jp.charras at wanadoo.fr
* Copyright (C) 2004-2018 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <cmath>
2014-06-08 10:35:42 +00:00
#include <exception>
#include <fstream>
#include <iomanip>
#include <vector>
#include <wx/dir.h>
#include "3d_cache/3d_cache.h"
#include "3d_cache/3d_info.h"
#include "class_board.h"
#include "class_edge_mod.h"
#include "class_module.h"
#include "class_pcb_text.h"
#include "class_track.h"
#include "class_zone.h"
#include "convert_to_biu.h"
2018-01-28 21:02:31 +00:00
#include "draw_graphic_text.h"
#include "macros.h"
#include "pgm_base.h"
#include "plugins/3dapi/ifsg_all.h"
#include "streamwrapper.h"
#include "vrml_layer.h"
2018-01-29 20:58:58 +00:00
#include "pcb_edit_frame.h"
#include "../../kicad/kicad.h"
2014-06-08 10:35:42 +00:00
#include <convert_basic_shapes_to_polygon.h>
#include <zone_filler.h>
2014-06-08 10:35:42 +00:00
// minimum width (mm) of a VRML line
#define MIN_VRML_LINEWIDTH 0.12
// offset for art layers, mm (silk, paste, etc)
#define ART_OFFSET 0.025
// offset for plating
#define PLATE_OFFSET 0.005
static S3D_CACHE* cache;
static bool USE_INLINES; // true to use legacy inline{} behavior
static bool USE_DEFS; // true to reuse component definitions
static bool USE_RELPATH; // true to use relative paths in VRML inline{}
static double WORLD_SCALE = 1.0; // scaling from 0.1 in to desired VRML unit
static double BOARD_SCALE; // scaling from mm to desired VRML world scale
static const int PRECISION = 6; // legacy precision factor (now set to 6)
static wxString SUBDIR_3D; // legacy 3D subdirectory
static wxString PROJ_DIR; // project directory
struct VRML_COLOR
{
float diffuse_red;
float diffuse_grn;
float diffuse_blu;
float spec_red;
float spec_grn;
float spec_blu;
float emit_red;
float emit_grn;
float emit_blu;
float ambient;
float transp;
float shiny;
VRML_COLOR()
{
// default green
diffuse_red = 0.13;
diffuse_grn = 0.81;
diffuse_blu = 0.22;
spec_red = 0.01;
spec_grn = 0.08;
spec_blu = 0.02;
emit_red = 0.0;
emit_grn = 0.0;
emit_blu = 0.0;
ambient = 0.8;
transp = 0;
shiny = 0.02;
}
VRML_COLOR( float dr, float dg, float db,
float sr, float sg, float sb,
float er, float eg, float eb,
float am, float tr, float sh )
{
diffuse_red = dr;
diffuse_grn = dg;
diffuse_blu = db;
spec_red = sr;
spec_grn = sg;
spec_blu = sb;
emit_red = er;
emit_grn = eg;
emit_blu = eb;
ambient = am;
transp = tr;
shiny = sh;
}
};
enum VRML_COLOR_INDEX
{
VRML_COLOR_NONE = -1,
VRML_COLOR_PCB = 0,
VRML_COLOR_TRACK,
VRML_COLOR_SILK,
VRML_COLOR_TIN,
VRML_COLOR_LAST
};
static VRML_COLOR colors[VRML_COLOR_LAST];
static SGNODE* sgmaterial[VRML_COLOR_LAST] = { NULL };
class MODEL_VRML
{
private:
double m_layer_z[PCB_LAYER_ID_COUNT];
int m_iMaxSeg; // max. sides to a small circle
double m_arcMinLen, m_arcMaxLen; // min and max lengths of an arc chord
2014-06-08 10:35:42 +00:00
public:
IFSG_TRANSFORM m_OutputPCB;
VRML_LAYER m_holes;
VRML_LAYER m_board;
VRML_LAYER m_top_copper;
VRML_LAYER m_bot_copper;
VRML_LAYER m_top_silk;
VRML_LAYER m_bot_silk;
VRML_LAYER m_top_tin;
VRML_LAYER m_bot_tin;
VRML_LAYER m_plated_holes;
std::list< SGNODE* > m_components;
bool m_plainPCB;
double m_minLineWidth; // minimum width of a VRML line segment
double m_tx; // global translation along X
double m_ty; // global translation along Y
double m_brd_thickness; // depth of the PCB
LAYER_NUM m_text_layer;
int m_text_width;
MODEL_VRML() : m_OutputPCB( (SGNODE*) NULL )
{
for( unsigned i = 0; i < DIM( m_layer_z ); ++i )
m_layer_z[i] = 0;
m_holes.GetArcParams( m_iMaxSeg, m_arcMinLen, m_arcMaxLen );
2014-06-08 10:35:42 +00:00
// this default only makes sense if the output is in mm
m_brd_thickness = 1.6;
// pcb green
colors[ VRML_COLOR_PCB ] = VRML_COLOR( .07, .3, .12, .01, .03, .01,
0, 0, 0, 0.8, 0, 0.02 );
// track green
colors[ VRML_COLOR_TRACK ] = VRML_COLOR( .08, .5, .1, .01, .05, .01,
0, 0, 0, 0.8, 0, 0.02 );
// silkscreen white
colors[ VRML_COLOR_SILK ] = VRML_COLOR( .9, .9, .9, .1, .1, .1,
0, 0, 0, 0.9, 0, 0.02 );
// pad silver
colors[ VRML_COLOR_TIN ] = VRML_COLOR( .749, .756, .761, .749, .756, .761,
0, 0, 0, 0.8, 0, 0.8 );
2014-06-08 10:35:42 +00:00
m_plainPCB = false;
SetOffset( 0.0, 0.0 );
m_text_layer = F_Cu;
m_text_width = 1;
m_minLineWidth = MIN_VRML_LINEWIDTH;
}
~MODEL_VRML()
{
// destroy any unassociated material appearances
for( int j = 0; j < VRML_COLOR_LAST; ++j )
{
if( sgmaterial[j] && NULL == S3D::GetSGNodeParent( sgmaterial[j] ) )
S3D::DestroyNode( sgmaterial[j] );
sgmaterial[j] = NULL;
}
if( !m_components.empty() )
{
IFSG_TRANSFORM tmp( false );
for( auto i : m_components )
{
tmp.Attach( i );
tmp.SetParent( NULL );
}
m_components.clear();
m_OutputPCB.Destroy();
}
}
VRML_COLOR& GetColor( VRML_COLOR_INDEX aIndex )
{
return colors[aIndex];
}
void SetOffset( double aXoff, double aYoff )
{
m_tx = aXoff;
m_ty = -aYoff;
m_holes.SetVertexOffsets( aXoff, aYoff );
m_board.SetVertexOffsets( aXoff, aYoff );
m_top_copper.SetVertexOffsets( aXoff, aYoff );
m_bot_copper.SetVertexOffsets( aXoff, aYoff );
m_top_silk.SetVertexOffsets( aXoff, aYoff );
m_bot_silk.SetVertexOffsets( aXoff, aYoff );
m_top_tin.SetVertexOffsets( aXoff, aYoff );
m_bot_tin.SetVertexOffsets( aXoff, aYoff );
m_plated_holes.SetVertexOffsets( aXoff, aYoff );
}
double GetLayerZ( LAYER_NUM aLayer )
{
if( unsigned( aLayer ) >= DIM( m_layer_z ) )
return 0;
return m_layer_z[ aLayer ];
}
void SetLayerZ( LAYER_NUM aLayer, double aValue )
{
m_layer_z[aLayer] = aValue;
}
2014-06-08 10:35:42 +00:00
// set the scaling of the VRML world
bool SetScale( double aWorldScale )
{
2014-06-08 10:35:42 +00:00
if( aWorldScale < 0.001 || aWorldScale > 10.0 )
throw( std::runtime_error( "WorldScale out of range (valid range is 0.001 to 10.0)" ) );
m_OutputPCB.SetScale( aWorldScale * 2.54 );
WORLD_SCALE = aWorldScale * 2.54;
2014-06-08 10:35:42 +00:00
return true;
}
2014-06-08 10:35:42 +00:00
};
// static var. for dealing with text
2014-06-08 10:35:42 +00:00
static MODEL_VRML* model_vrml;
// select the VRML layer object to draw on; return true if
// a layer has been selected.
2014-06-08 10:35:42 +00:00
static bool GetLayer( MODEL_VRML& aModel, LAYER_NUM layer, VRML_LAYER** vlayer )
{
switch( layer )
{
case B_Cu:
*vlayer = &aModel.m_bot_copper;
break;
case F_Cu:
*vlayer = &aModel.m_top_copper;
break;
case B_SilkS:
*vlayer = &aModel.m_bot_silk;
break;
case F_SilkS:
*vlayer = &aModel.m_top_silk;
break;
default:
return false;
}
return true;
}
static void create_vrml_shell( IFSG_TRANSFORM& PcbOutput, VRML_COLOR_INDEX colorID,
VRML_LAYER* layer, double top_z, double bottom_z );
static void create_vrml_plane( IFSG_TRANSFORM& PcbOutput, VRML_COLOR_INDEX colorID,
VRML_LAYER* layer, double aHeight, bool aTopPlane );
static void write_triangle_bag( std::ostream& aOut_file, VRML_COLOR& aColor,
VRML_LAYER* aLayer, bool aPlane, bool aTop,
double aTop_z, double aBottom_z )
{
/* A lot of nodes are not required, but blender sometimes chokes
* without them */
static const char* shape_boiler[] =
{
"Transform {\n",
" children [\n",
" Group {\n",
" children [\n",
" Shape {\n",
" appearance Appearance {\n",
" material Material {\n",
0, // Material marker
" }\n",
" }\n",
" geometry IndexedFaceSet {\n",
" solid TRUE\n",
" coord Coordinate {\n",
" point [\n",
0, // Coordinates marker
" ]\n",
" }\n",
" coordIndex [\n",
0, // Index marker
" ]\n",
" }\n",
" }\n",
" ]\n",
" }\n",
" ]\n",
"}\n",
0 // End marker
};
int marker_found = 0, lineno = 0;
while( marker_found < 4 )
{
if( shape_boiler[lineno] )
aOut_file << shape_boiler[lineno];
else
{
marker_found++;
switch( marker_found )
{
case 1: // Material marker
aOut_file << " diffuseColor " << std::setprecision(3);
aOut_file << aColor.diffuse_red << " ";
aOut_file << aColor.diffuse_grn << " ";
aOut_file << aColor.diffuse_blu << "\n";
aOut_file << " specularColor ";
aOut_file << aColor.spec_red << " ";
aOut_file << aColor.spec_grn << " ";
aOut_file << aColor.spec_blu << "\n";
aOut_file << " emissiveColor ";
aOut_file << aColor.emit_red << " ";
aOut_file << aColor.emit_grn << " ";
aOut_file << aColor.emit_blu << "\n";
aOut_file << " ambientIntensity " << aColor.ambient << "\n";
aOut_file << " transparency " << aColor.transp << "\n";
aOut_file << " shininess " << aColor.shiny << "\n";
break;
case 2:
if( aPlane )
aLayer->WriteVertices( aTop_z, aOut_file, PRECISION );
else
aLayer->Write3DVertices( aTop_z, aBottom_z, aOut_file, PRECISION );
aOut_file << "\n";
break;
case 3:
if( aPlane )
aLayer->WriteIndices( aTop, aOut_file );
else
aLayer->Write3DIndices( aOut_file );
aOut_file << "\n";
break;
default:
break;
}
}
lineno++;
}
}
static void write_layers( MODEL_VRML& aModel, BOARD* aPcb,
2017-03-04 10:10:58 +00:00
const char* aFileName, OSTREAM* aOutputFile )
{
// VRML_LAYER board;
aModel.m_board.Tesselate( &aModel.m_holes );
double brdz = aModel.m_brd_thickness / 2.0
- ( Millimeter2iu( ART_OFFSET / 2.0 ) ) * BOARD_SCALE;
if( USE_INLINES )
{
write_triangle_bag( *aOutputFile, aModel.GetColor( VRML_COLOR_PCB ),
&aModel.m_board, false, false, brdz, -brdz );
}
else
{
create_vrml_shell( aModel.m_OutputPCB, VRML_COLOR_PCB, &aModel.m_board, brdz, -brdz );
}
if( aModel.m_plainPCB )
{
if( !USE_INLINES )
S3D::WriteVRML( aFileName, true, aModel.m_OutputPCB.GetRawPtr(), USE_DEFS, true );
return;
}
// VRML_LAYER m_top_copper;
aModel.m_top_copper.Tesselate( &aModel.m_holes );
if( USE_INLINES )
{
write_triangle_bag( *aOutputFile, aModel.GetColor( VRML_COLOR_TRACK ),
&aModel.m_top_copper, true, true,
aModel.GetLayerZ( F_Cu ), 0 );
}
else
{
create_vrml_plane( aModel.m_OutputPCB, VRML_COLOR_TRACK, &aModel.m_top_copper,
aModel.GetLayerZ( F_Cu ), true );
}
// VRML_LAYER m_top_tin;
aModel.m_top_tin.Tesselate( &aModel.m_holes );
if( USE_INLINES )
{
write_triangle_bag( *aOutputFile, aModel.GetColor( VRML_COLOR_TIN ),
&aModel.m_top_tin, true, true,
aModel.GetLayerZ( F_Cu ) + Millimeter2iu( ART_OFFSET / 2.0 ) * BOARD_SCALE,
0 );
}
else
{
create_vrml_plane( aModel.m_OutputPCB, VRML_COLOR_TIN, &aModel.m_top_tin,
aModel.GetLayerZ( F_Cu ) + Millimeter2iu( ART_OFFSET / 2.0 ) * BOARD_SCALE,
true );
}
// VRML_LAYER m_bot_copper;
aModel.m_bot_copper.Tesselate( &aModel.m_holes );
if( USE_INLINES )
{
write_triangle_bag( *aOutputFile, aModel.GetColor( VRML_COLOR_TRACK ),
&aModel.m_bot_copper, true, false,
aModel.GetLayerZ( B_Cu ), 0 );
}
else
{
create_vrml_plane( aModel.m_OutputPCB, VRML_COLOR_TRACK, &aModel.m_bot_copper,
aModel.GetLayerZ( B_Cu ), false );
}
// VRML_LAYER m_bot_tin;
aModel.m_bot_tin.Tesselate( &aModel.m_holes );
if( USE_INLINES )
{
write_triangle_bag( *aOutputFile, aModel.GetColor( VRML_COLOR_TIN ),
&aModel.m_bot_tin, true, false,
aModel.GetLayerZ( B_Cu )
- Millimeter2iu( ART_OFFSET / 2.0 ) * BOARD_SCALE,
0 );
}
else
{
create_vrml_plane( aModel.m_OutputPCB, VRML_COLOR_TIN, &aModel.m_bot_tin,
aModel.GetLayerZ( B_Cu ) - Millimeter2iu( ART_OFFSET / 2.0 ) * BOARD_SCALE,
false );
}
// VRML_LAYER PTH;
aModel.m_plated_holes.Tesselate( NULL, true );
if( USE_INLINES )
{
write_triangle_bag( *aOutputFile, aModel.GetColor( VRML_COLOR_TIN ),
&aModel.m_plated_holes, false, false,
aModel.GetLayerZ( F_Cu ) + Millimeter2iu( ART_OFFSET / 2.0 ) * BOARD_SCALE,
aModel.GetLayerZ( B_Cu ) - Millimeter2iu( ART_OFFSET / 2.0 ) * BOARD_SCALE );
}
else
{
create_vrml_shell( aModel.m_OutputPCB, VRML_COLOR_TIN, &aModel.m_plated_holes,
aModel.GetLayerZ( F_Cu ) + Millimeter2iu( ART_OFFSET / 2.0 ) * BOARD_SCALE,
aModel.GetLayerZ( B_Cu ) - Millimeter2iu( ART_OFFSET / 2.0 ) * BOARD_SCALE );
}
// VRML_LAYER m_top_silk;
aModel.m_top_silk.Tesselate( &aModel.m_holes );
if( USE_INLINES )
{
write_triangle_bag( *aOutputFile, aModel.GetColor( VRML_COLOR_SILK ), &aModel.m_top_silk,
true, true, aModel.GetLayerZ( F_SilkS ), 0 );
}
else
{
create_vrml_plane( aModel.m_OutputPCB, VRML_COLOR_SILK, &aModel.m_top_silk,
aModel.GetLayerZ( F_SilkS ), true );
}
// VRML_LAYER m_bot_silk;
aModel.m_bot_silk.Tesselate( &aModel.m_holes );
if( USE_INLINES )
{
write_triangle_bag( *aOutputFile, aModel.GetColor( VRML_COLOR_SILK ), &aModel.m_bot_silk,
true, false, aModel.GetLayerZ( B_SilkS ), 0 );
}
else
{
create_vrml_plane( aModel.m_OutputPCB, VRML_COLOR_SILK, &aModel.m_bot_silk,
aModel.GetLayerZ( B_SilkS ), false );
}
if( !USE_INLINES )
S3D::WriteVRML( aFileName, true, aModel.m_OutputPCB.GetRawPtr(), true, true );
}
static void compute_layer_Zs( MODEL_VRML& aModel, BOARD* pcb )
{
int copper_layers = pcb->GetCopperLayerCount();
// We call it 'layer' thickness, but it's the whole board thickness!
aModel.m_brd_thickness = pcb->GetDesignSettings().GetBoardThickness() * BOARD_SCALE;
double half_thickness = aModel.m_brd_thickness / 2;
2012-02-19 04:02:19 +00:00
// Compute each layer's Z value, more or less like the 3d view
for( LSEQ seq = LSET::AllCuMask().Seq(); seq; ++seq )
{
PCB_LAYER_ID i = *seq;
if( i < copper_layers )
aModel.SetLayerZ( i, half_thickness - aModel.m_brd_thickness * i / (copper_layers - 1) );
else
aModel.SetLayerZ( i, - half_thickness ); // bottom layer
}
/* To avoid rounding interference, we apply an epsilon to each
* successive layer */
double epsilon_z = Millimeter2iu( ART_OFFSET ) * BOARD_SCALE;
aModel.SetLayerZ( B_Paste, -half_thickness - epsilon_z * 4 );
aModel.SetLayerZ( B_Adhes, -half_thickness - epsilon_z * 3 );
aModel.SetLayerZ( B_SilkS, -half_thickness - epsilon_z * 2 );
aModel.SetLayerZ( B_Mask, -half_thickness - epsilon_z );
aModel.SetLayerZ( F_Mask, half_thickness + epsilon_z );
aModel.SetLayerZ( F_SilkS, half_thickness + epsilon_z * 2 );
aModel.SetLayerZ( F_Adhes, half_thickness + epsilon_z * 3 );
aModel.SetLayerZ( F_Paste, half_thickness + epsilon_z * 4 );
aModel.SetLayerZ( Dwgs_User, half_thickness + epsilon_z * 5 );
aModel.SetLayerZ( Cmts_User, half_thickness + epsilon_z * 6 );
aModel.SetLayerZ( Eco1_User, half_thickness + epsilon_z * 7 );
aModel.SetLayerZ( Eco2_User, half_thickness + epsilon_z * 8 );
aModel.SetLayerZ( Edge_Cuts, 0 );
}
static void export_vrml_line( MODEL_VRML& aModel, LAYER_NUM layer,
double startx, double starty,
double endx, double endy, double width )
{
VRML_LAYER* vlayer;
2014-06-08 10:35:42 +00:00
if( !GetLayer( aModel, layer, &vlayer ) )
return;
if( width < aModel.m_minLineWidth)
width = aModel.m_minLineWidth;
2014-06-08 10:35:42 +00:00
starty = -starty;
endy = -endy;
2014-06-08 10:35:42 +00:00
double angle = atan2( endy - starty, endx - startx ) * 180.0 / M_PI;
double length = Distance( startx, starty, endx, endy ) + width;
double cx = ( startx + endx ) / 2.0;
double cy = ( starty + endy ) / 2.0;
2014-06-08 10:35:42 +00:00
if( !vlayer->AddSlot( cx, cy, length, width, angle, false ) )
throw( std::runtime_error( vlayer->GetError() ) );
}
static void export_vrml_circle( MODEL_VRML& aModel, LAYER_NUM layer,
double startx, double starty,
double endx, double endy, double width )
{
VRML_LAYER* vlayer;
2014-06-08 10:35:42 +00:00
if( !GetLayer( aModel, layer, &vlayer ) )
return;
if( width < aModel.m_minLineWidth )
width = aModel.m_minLineWidth;
2014-06-08 10:35:42 +00:00
starty = -starty;
endy = -endy;
double hole, radius;
radius = Distance( startx, starty, endx, endy ) + ( width / 2);
hole = radius - width;
2014-06-08 10:35:42 +00:00
if( !vlayer->AddCircle( startx, starty, radius, false ) )
throw( std::runtime_error( vlayer->GetError() ) );
if( hole > 0.0001 )
{
2014-06-08 10:35:42 +00:00
if( !vlayer->AddCircle( startx, starty, hole, true ) )
throw( std::runtime_error( vlayer->GetError() ) );
}
}
static void export_vrml_arc( MODEL_VRML& aModel, LAYER_NUM layer,
double centerx, double centery,
double arc_startx, double arc_starty,
double width, double arc_angle )
{
VRML_LAYER* vlayer;
2014-06-08 10:35:42 +00:00
if( !GetLayer( aModel, layer, &vlayer ) )
return;
if( width < aModel.m_minLineWidth )
width = aModel.m_minLineWidth;
2014-06-08 10:35:42 +00:00
centery = -centery;
arc_starty = -arc_starty;
if( !vlayer->AddArc( centerx, centery, arc_startx, arc_starty, width, -arc_angle, false ) )
2014-06-08 10:35:42 +00:00
throw( std::runtime_error( vlayer->GetError() ) );
}
static void export_vrml_polygon( MODEL_VRML& aModel, LAYER_NUM layer,
DRAWSEGMENT *aOutline, double aOrientation, wxPoint aPos )
{
const int circleSegmentsCount = 32;
if( aOutline->IsPolyShapeValid() )
{
SHAPE_POLY_SET shape = aOutline->GetPolyShape();
VRML_LAYER* vlayer;
if( !GetLayer( aModel, layer, &vlayer ) )
return;
if( aOutline->GetWidth() )
{
shape.Inflate( aOutline->GetWidth()/2, circleSegmentsCount );
shape.Fracture( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
}
shape.Rotate( -aOrientation, VECTOR2I( 0, 0 ) );
shape.Move( aPos );
const SHAPE_LINE_CHAIN& outline = shape.COutline( 0 );
int seg = vlayer->NewContour();
for( int j = 0; j < outline.PointCount(); j++ )
{
if( !vlayer->AddVertex( seg, outline.CPoint( j ).x * BOARD_SCALE,
-outline.CPoint( j ).y * BOARD_SCALE ) )
throw( std::runtime_error( vlayer->GetError() ) );
}
vlayer->EnsureWinding( seg, false );
}
}
static void export_vrml_drawsegment( MODEL_VRML& aModel, DRAWSEGMENT* drawseg )
{
LAYER_NUM layer = drawseg->GetLayer();
double w = drawseg->GetWidth() * BOARD_SCALE;
double x = drawseg->GetStart().x * BOARD_SCALE;
double y = drawseg->GetStart().y * BOARD_SCALE;
double xf = drawseg->GetEnd().x * BOARD_SCALE;
double yf = drawseg->GetEnd().y * BOARD_SCALE;
double r = sqrt( pow( x - xf, 2 ) + pow( y - yf, 2 ) );
// Items on the edge layer are handled elsewhere; just return
if( layer == Edge_Cuts )
return;
switch( drawseg->GetShape() )
{
case S_ARC:
export_vrml_arc( aModel, layer,
(double) drawseg->GetCenter().x * BOARD_SCALE,
(double) drawseg->GetCenter().y * BOARD_SCALE,
(double) drawseg->GetArcStart().x * BOARD_SCALE,
(double) drawseg->GetArcStart().y * BOARD_SCALE,
w, drawseg->GetAngle() / 10 );
break;
case S_CIRCLE:
// Break circles into two 180 arcs to prevent the vrml hole from obscuring objects
// within the hole area of the circle.
export_vrml_arc( aModel, layer, x, y, x, y-r, w, 180.0 );
export_vrml_arc( aModel, layer, x, y, x, y+r, w, 180.0 );
break;
case S_POLYGON:
export_vrml_polygon( aModel, layer, drawseg, 0.0, wxPoint( 0, 0 ) );
break;
default:
export_vrml_line( aModel, layer, x, y, xf, yf, w );
break;
}
}
/* C++ doesn't have closures and neither continuation forms... this is
* for coupling the vrml_text_callback with the common parameters */
static void vrml_text_callback( int x0, int y0, int xf, int yf, void* aData )
{
LAYER_NUM m_text_layer = model_vrml->m_text_layer;
int m_text_width = model_vrml->m_text_width;
export_vrml_line( *model_vrml, m_text_layer,
x0 * BOARD_SCALE, y0 * BOARD_SCALE,
xf * BOARD_SCALE, yf * BOARD_SCALE,
m_text_width * BOARD_SCALE );
}
static void export_vrml_pcbtext( MODEL_VRML& aModel, TEXTE_PCB* text )
{
model_vrml->m_text_layer = text->GetLayer();
model_vrml->m_text_width = text->GetThickness();
wxSize size = text->GetTextSize();
if( text->IsMirrored() )
size.x = -size.x;
COLOR4D color = COLOR4D::BLACK; // not actually used, but needed by DrawGraphicText
if( text->IsMultilineAllowed() )
{
wxArrayString strings_list;
wxStringSplit( text->GetShownText(), strings_list, '\n' );
std::vector<wxPoint> positions;
positions.reserve( strings_list.Count() );
text->GetPositionsOfLinesOfMultilineText( positions, strings_list.Count() );
for( unsigned ii = 0; ii < strings_list.Count(); ii++ )
{
wxString& txt = strings_list.Item( ii );
DrawGraphicText( NULL, NULL, positions[ii], color,
txt, text->GetTextAngle(), size,
text->GetHorizJustify(), text->GetVertJustify(),
text->GetThickness(), text->IsItalic(),
true,
vrml_text_callback );
}
}
else
{
DrawGraphicText( NULL, NULL, text->GetTextPos(), color,
text->GetShownText(), text->GetTextAngle(), size,
text->GetHorizJustify(), text->GetVertJustify(),
text->GetThickness(), text->IsItalic(),
true,
vrml_text_callback );
}
}
static void export_vrml_drawings( MODEL_VRML& aModel, BOARD* pcb )
{
2012-02-19 04:02:19 +00:00
// draw graphic items
for( auto drawing : pcb->Drawings() )
{
PCB_LAYER_ID layer = drawing->GetLayer();
if( layer != F_Cu && layer != B_Cu && layer != B_SilkS && layer != F_SilkS )
continue;
switch( drawing->Type() )
{
case PCB_LINE_T:
export_vrml_drawsegment( aModel, (DRAWSEGMENT*) drawing );
break;
case PCB_TEXT_T:
export_vrml_pcbtext( aModel, (TEXTE_PCB*) drawing );
break;
default:
break;
}
}
}
// board edges and cutouts
static void export_vrml_board( MODEL_VRML& aModel, BOARD* aPcb )
{
SHAPE_POLY_SET pcbOutlines; // stores the board main outlines
wxString msg;
if( !aPcb->GetBoardPolygonOutlines( pcbOutlines, &msg ) )
{
msg << "\n\n" <<
_( "Unable to calculate the board outlines; fall back to using the board boundary box." );
wxMessageBox( msg );
}
int seg;
for( int cnt = 0; cnt < pcbOutlines.OutlineCount(); cnt++ )
{
const SHAPE_LINE_CHAIN& outline = pcbOutlines.COutline( cnt );
seg = aModel.m_board.NewContour();
for( int j = 0; j < outline.PointCount(); j++ )
{
aModel.m_board.AddVertex( seg, (double)outline.CPoint(j).x * BOARD_SCALE,
-((double)outline.CPoint(j).y * BOARD_SCALE ) );
}
aModel.m_board.EnsureWinding( seg, false );
// Generate holes:
for( int ii = 0; ii < pcbOutlines.HoleCount( cnt ); ii++ )
{
const SHAPE_LINE_CHAIN& hole = pcbOutlines.Hole( cnt, ii );
seg = aModel.m_holes.NewContour();
if( seg < 0 )
{
msg << "\n\n" <<
_( "VRML Export Failed: Could not add holes to contours." );
wxMessageBox( msg );
return;
}
for( int j = 0; j < hole.PointCount(); j++ )
{
aModel.m_holes.AddVertex( seg, (double)hole.CPoint(j).x * BOARD_SCALE,
-((double)hole.CPoint(j).y * BOARD_SCALE ) );
2014-06-08 10:35:42 +00:00
}
aModel.m_holes.EnsureWinding( seg, true );
}
}
}
static void export_round_padstack( MODEL_VRML& aModel, BOARD* pcb,
double x, double y, double r,
LAYER_NUM bottom_layer, LAYER_NUM top_layer,
double hole )
{
LAYER_NUM layer = top_layer;
bool thru = true;
// if not a thru hole do not put a hole in the board
if( top_layer != F_Cu || bottom_layer != B_Cu )
thru = false;
2014-06-08 10:35:42 +00:00
if( thru && hole > 0 )
aModel.m_holes.AddCircle( x, -y, hole, true );
2014-06-08 10:35:42 +00:00
if( aModel.m_plainPCB )
return;
while( 1 )
{
if( layer == B_Cu )
{
aModel.m_bot_copper.AddCircle( x, -y, r );
2014-06-08 10:35:42 +00:00
if( hole > 0 && !thru )
aModel.m_bot_copper.AddCircle( x, -y, hole, true );
}
else if( layer == F_Cu )
{
aModel.m_top_copper.AddCircle( x, -y, r );
2014-06-08 10:35:42 +00:00
if( hole > 0 && !thru )
aModel.m_top_copper.AddCircle( x, -y, hole, true );
}
if( layer == bottom_layer )
break;
layer = bottom_layer;
}
}
static void export_vrml_via( MODEL_VRML& aModel, BOARD* aPcb, const VIA* aVia )
{
double x, y, r, hole;
PCB_LAYER_ID top_layer, bottom_layer;
hole = aVia->GetDrillValue() * BOARD_SCALE / 2.0;
r = aVia->GetWidth() * BOARD_SCALE / 2.0;
x = aVia->GetStart().x * BOARD_SCALE;
y = aVia->GetStart().y * BOARD_SCALE;
aVia->LayerPair( &top_layer, &bottom_layer );
// do not render a buried via
if( top_layer != F_Cu && bottom_layer != B_Cu )
return;
// Export the via padstack
export_round_padstack( aModel, aPcb, x, y, r, bottom_layer, top_layer, hole );
}
static void export_vrml_tracks( MODEL_VRML& aModel, BOARD* pcb )
{
for( TRACK* track = pcb->m_Track; track; track = track->Next() )
{
if( track->Type() == PCB_VIA_T )
{
export_vrml_via( aModel, pcb, (const VIA*) track );
}
else if( ( track->GetLayer() == B_Cu || track->GetLayer() == F_Cu )
&& !aModel.m_plainPCB )
export_vrml_line( aModel, track->GetLayer(),
track->GetStart().x * BOARD_SCALE,
track->GetStart().y * BOARD_SCALE,
track->GetEnd().x * BOARD_SCALE,
track->GetEnd().y * BOARD_SCALE,
track->GetWidth() * BOARD_SCALE );
}
}
static void export_vrml_zones( MODEL_VRML& aModel, BOARD* aPcb )
{
for( int ii = 0; ii < aPcb->GetAreaCount(); ii++ )
{
ZONE_CONTAINER* zone = aPcb->GetArea( ii );
VRML_LAYER* vl;
2014-06-08 10:35:42 +00:00
if( !GetLayer( aModel, zone->GetLayer(), &vl ) )
continue;
// fixme: this modifies the board where it shouldn't, but I don't have the time
// to clean this up - TW
if( !zone->IsFilled() )
{
ZONE_FILLER filler( aPcb );
zone->SetFillMode( ZFM_POLYGONS ); // use filled polygons
filler.Fill( { zone } );
}
const SHAPE_POLY_SET& poly = zone->GetFilledPolysList();
for( int i = 0; i < poly.OutlineCount(); i++ )
{
const SHAPE_LINE_CHAIN& outline = poly.COutline( i );
int seg = vl->NewContour();
for( int j = 0; j < outline.PointCount(); j++ )
{
if( !vl->AddVertex( seg, (double)outline.CPoint( j ).x * BOARD_SCALE,
-((double)outline.CPoint( j ).y * BOARD_SCALE ) ) )
2014-06-08 10:35:42 +00:00
throw( std::runtime_error( vl->GetError() ) );
}
vl->EnsureWinding( seg, false );
}
}
}
static void export_vrml_text_module( TEXTE_MODULE* module )
{
2011-12-12 08:37:05 +00:00
if( module->IsVisible() )
{
wxSize size = module->GetTextSize();
if( module->IsMirrored() )
size.x = -size.x; // Text is mirrored
model_vrml->m_text_layer = module->GetLayer();
model_vrml->m_text_width = module->GetThickness();
DrawGraphicText( NULL, NULL, module->GetTextPos(), BLACK,
module->GetShownText(), module->GetDrawRotation(), size,
module->GetHorizJustify(), module->GetVertJustify(),
module->GetThickness(), module->IsItalic(),
true,
vrml_text_callback );
}
}
static void export_vrml_edge_module( MODEL_VRML& aModel, EDGE_MODULE* aOutline,
MODULE* aModule )
{
LAYER_NUM layer = aOutline->GetLayer();
double x = aOutline->GetStart().x * BOARD_SCALE;
double y = aOutline->GetStart().y * BOARD_SCALE;
double xf = aOutline->GetEnd().x * BOARD_SCALE;
double yf = aOutline->GetEnd().y * BOARD_SCALE;
double w = aOutline->GetWidth() * BOARD_SCALE;
switch( aOutline->GetShape() )
{
case S_SEGMENT:
export_vrml_line( aModel, layer, x, y, xf, yf, w );
break;
case S_ARC:
export_vrml_arc( aModel, layer, x, y, xf, yf, w, aOutline->GetAngle() / 10 );
break;
case S_CIRCLE:
export_vrml_circle( aModel, layer, x, y, xf, yf, w );
break;
case S_POLYGON:
export_vrml_polygon( aModel, layer, aOutline, aModule->GetOrientationRadians(),
aModule->GetPosition() );
break;
default:
break;
}
}
2014-06-08 10:35:42 +00:00
static void export_vrml_padshape( MODEL_VRML& aModel, VRML_LAYER* aTinLayer, D_PAD* aPad )
{
// The (maybe offset) pad position
* KIWAY Milestone A): Make major modules into DLL/DSOs. ! The initial testing of this commit should be done using a Debug build so that all the wxASSERT()s are enabled. Also, be sure and keep enabled the USE_KIWAY_DLLs option. The tree won't likely build without it. Turning it off is senseless anyways. If you want stable code, go back to a prior version, the one tagged with "stable". * Relocate all functionality out of the wxApp derivative into more finely targeted purposes: a) DLL/DSO specific b) PROJECT specific c) EXE or process specific d) configuration file specific data e) configuration file manipulations functions. All of this functionality was blended into an extremely large wxApp derivative and that was incompatible with the desire to support multiple concurrently loaded DLL/DSO's ("KIFACE")s and multiple concurrently open projects. An amazing amount of organization come from simply sorting each bit of functionality into the proper box. * Switch to wxConfigBase from wxConfig everywhere except instantiation. * Add classes KIWAY, KIFACE, KIFACE_I, SEARCH_STACK, PGM_BASE, PGM_KICAD, PGM_SINGLE_TOP, * Remove "Return" prefix on many function names. * Remove obvious comments from CMakeLists.txt files, and from else() and endif()s. * Fix building boost for use in a DSO on linux. * Remove some of the assumptions in the CMakeLists.txt files that windows had to be the host platform when building windows binaries. * Reduce the number of wxStrings being constructed at program load time via static construction. * Pass wxConfigBase* to all SaveSettings() and LoadSettings() functions so that these functions are useful even when the wxConfigBase comes from another source, as is the case in the KICAD_MANAGER_FRAME. * Move the setting of the KIPRJMOD environment variable into class PROJECT, so that it can be moved into a project variable soon, and out of FP_LIB_TABLE. * Add the KIWAY_PLAYER which is associated with a particular PROJECT, and all its child wxFrames and wxDialogs now have a Kiway() member function which returns a KIWAY& that that window tree branch is in support of. This is like wxWindows DNA in that child windows get this member with proper value at time of construction. * Anticipate some of the needs for milestones B) and C) and make code adjustments now in an effort to reduce work in those milestones. * No testing has been done for python scripting, since milestone C) has that being largely reworked and re-thought-out.
2014-03-20 00:42:08 +00:00
wxPoint pad_pos = aPad->ShapePos();
double pad_x = pad_pos.x * BOARD_SCALE;
double pad_y = pad_pos.y * BOARD_SCALE;
wxSize pad_delta = aPad->GetDelta();
double pad_dx = pad_delta.x * BOARD_SCALE / 2.0;
double pad_dy = pad_delta.y * BOARD_SCALE / 2.0;
double pad_w = aPad->GetSize().x * BOARD_SCALE / 2.0;
double pad_h = aPad->GetSize().y * BOARD_SCALE / 2.0;
switch( aPad->GetShape() )
{
case PAD_SHAPE_CIRCLE:
2014-06-08 10:35:42 +00:00
if( !aTinLayer->AddCircle( pad_x, -pad_y, pad_w, false ) )
throw( std::runtime_error( aTinLayer->GetError() ) );
break;
case PAD_SHAPE_OVAL:
2014-06-08 10:35:42 +00:00
if( !aTinLayer->AddSlot( pad_x, -pad_y, pad_w * 2.0, pad_h * 2.0,
aPad->GetOrientation()/10.0, false ) )
throw( std::runtime_error( aTinLayer->GetError() ) );
break;
case PAD_SHAPE_ROUNDRECT:
{
SHAPE_POLY_SET polySet;
int segmentToCircleCount = 32;
const int corner_radius = aPad->GetRoundRectCornerRadius( aPad->GetSize() );
TransformRoundRectToPolygon( polySet, wxPoint( 0, 0 ), aPad->GetSize(),
0.0, corner_radius, segmentToCircleCount );
std::vector< wxRealPoint > cornerList;
// TransformRoundRectToPolygon creates only one convex polygon
SHAPE_LINE_CHAIN poly( polySet.Outline( 0 ) );
for( int ii = 0; ii < poly.PointCount(); ++ii )
cornerList.push_back( wxRealPoint( poly.Point( ii ).x * BOARD_SCALE,
-poly.Point( ii ).y * BOARD_SCALE ) );
// Close polygon
cornerList.push_back( cornerList[0] );
if( !aTinLayer->AddPolygon( cornerList, pad_x, -pad_y, aPad->GetOrientation() ) )
throw( std::runtime_error( aTinLayer->GetError() ) );
break;
}
case PAD_SHAPE_CUSTOM:
{
SHAPE_POLY_SET polySet;
int segmentToCircleCount = 32;
std::vector< wxRealPoint > cornerList;
aPad->MergePrimitivesAsPolygon( &polySet, segmentToCircleCount );
for( int cnt = 0; cnt < polySet.OutlineCount(); ++cnt )
{
SHAPE_LINE_CHAIN& poly = polySet.Outline( cnt );
cornerList.clear();
for( int ii = 0; ii < poly.PointCount(); ++ii )
cornerList.push_back( wxRealPoint( poly.Point( ii ).x * BOARD_SCALE,
-poly.Point( ii ).y * BOARD_SCALE ) );
// Close polygon
cornerList.push_back( cornerList[0] );
if( !aTinLayer->AddPolygon( cornerList, pad_x, -pad_y, aPad->GetOrientation() ) )
throw( std::runtime_error( aTinLayer->GetError() ) );
}
break;
}
case PAD_SHAPE_RECT:
// Just to be sure :D
pad_dx = 0;
pad_dy = 0;
case PAD_SHAPE_TRAPEZOID:
{
double coord[8] =
{
-pad_w + pad_dy, -pad_h - pad_dx,
-pad_w - pad_dy, pad_h + pad_dx,
+pad_w - pad_dy, -pad_h + pad_dx,
+pad_w + pad_dy, pad_h - pad_dx
};
for( int i = 0; i < 4; i++ )
{
RotatePoint( &coord[i * 2], &coord[i * 2 + 1], aPad->GetOrientation() );
coord[i * 2] += pad_x;
coord[i * 2 + 1] += pad_y;
}
int lines;
2014-06-08 10:35:42 +00:00
lines = aTinLayer->NewContour();
if( lines < 0 )
throw( std::runtime_error( aTinLayer->GetError() ) );
if( !aTinLayer->AddVertex( lines, coord[0], -coord[1] ) )
throw( std::runtime_error( aTinLayer->GetError() ) );
if( !aTinLayer->AddVertex( lines, coord[4], -coord[5] ) )
throw( std::runtime_error( aTinLayer->GetError() ) );
if( !aTinLayer->AddVertex( lines, coord[6], -coord[7] ) )
throw( std::runtime_error( aTinLayer->GetError() ) );
2014-06-08 10:35:42 +00:00
if( !aTinLayer->AddVertex( lines, coord[2], -coord[3] ) )
throw( std::runtime_error( aTinLayer->GetError() ) );
if( !aTinLayer->EnsureWinding( lines, false ) )
throw( std::runtime_error( aTinLayer->GetError() ) );
break;
}
default:
2014-06-08 10:35:42 +00:00
break;
}
}
static void export_vrml_pad( MODEL_VRML& aModel, BOARD* aPcb, D_PAD* aPad )
{
double hole_drill_w = (double) aPad->GetDrillSize().x * BOARD_SCALE / 2.0;
double hole_drill_h = (double) aPad->GetDrillSize().y * BOARD_SCALE / 2.0;
double hole_drill = std::min( hole_drill_w, hole_drill_h );
double hole_x = aPad->GetPosition().x * BOARD_SCALE;
double hole_y = aPad->GetPosition().y * BOARD_SCALE;
2012-02-19 04:02:19 +00:00
// Export the hole on the edge layer
if( hole_drill > 0 )
{
bool pth = false;
if( ( aPad->GetAttribute() != PAD_ATTRIB_HOLE_NOT_PLATED )
&& !aModel.m_plainPCB )
pth = true;
if( aPad->GetDrillShape() == PAD_DRILL_SHAPE_OBLONG )
{
2012-02-19 04:02:19 +00:00
// Oblong hole (slot)
if( pth )
{
aModel.m_holes.AddSlot( hole_x, -hole_y, hole_drill_w * 2.0 + PLATE_OFFSET,
hole_drill_h * 2.0 + PLATE_OFFSET,
aPad->GetOrientation()/10.0, true, true );
aModel.m_plated_holes.AddSlot( hole_x, -hole_y,
hole_drill_w * 2.0, hole_drill_h * 2.0,
aPad->GetOrientation()/10.0, true, false );
}
else
{
aModel.m_holes.AddSlot( hole_x, -hole_y, hole_drill_w * 2.0, hole_drill_h * 2.0,
aPad->GetOrientation()/10.0, true, false );
}
}
else
{
// Drill a round hole
if( pth )
{
aModel.m_holes.AddCircle( hole_x, -hole_y, hole_drill + PLATE_OFFSET, true, true );
aModel.m_plated_holes.AddCircle( hole_x, -hole_y, hole_drill, true, false );
}
else
{
aModel.m_holes.AddCircle( hole_x, -hole_y, hole_drill, true, false );
}
}
}
if( aModel.m_plainPCB )
return;
2012-02-19 04:02:19 +00:00
// The pad proper, on the selected layers
LSET layer_mask = aPad->GetLayerSet();
2012-02-19 04:02:19 +00:00
if( layer_mask[B_Cu] )
{
if( layer_mask[B_Mask] )
export_vrml_padshape( aModel, &aModel.m_bot_tin, aPad );
else
export_vrml_padshape( aModel, &aModel.m_bot_copper, aPad );
}
if( layer_mask[F_Cu] )
{
if( layer_mask[F_Mask] )
export_vrml_padshape( aModel, &aModel.m_top_tin, aPad );
else
export_vrml_padshape( aModel, &aModel.m_top_copper, aPad );
}
}
2012-02-19 04:02:19 +00:00
// From axis/rot to quaternion
static void build_quat( double x, double y, double z, double a, double q[4] )
{
double sina = sin( a / 2 );
q[0] = x * sina;
q[1] = y * sina;
q[2] = z * sina;
q[3] = cos( a / 2 );
}
2012-02-19 04:02:19 +00:00
// From quaternion to axis/rot
static void from_quat( double q[4], double rot[4] )
{
rot[3] = acos( q[3] ) * 2;
for( int i = 0; i < 3; i++ )
{
rot[i] = q[i] / sin( rot[3] / 2 );
}
}
2012-02-19 04:02:19 +00:00
// Quaternion composition
static void compose_quat( double q1[4], double q2[4], double qr[4] )
{
double tmp[4];
tmp[0] = q2[3] * q1[0] + q2[0] * q1[3] + q2[1] * q1[2] - q2[2] * q1[1];
tmp[1] = q2[3] * q1[1] + q2[1] * q1[3] + q2[2] * q1[0] - q2[0] * q1[2];
tmp[2] = q2[3] * q1[2] + q2[2] * q1[3] + q2[0] * q1[1] - q2[1] * q1[0];
tmp[3] = q2[3] * q1[3] - q2[0] * q1[0] - q2[1] * q1[1] - q2[2] * q1[2];
qr[0] = tmp[0];
qr[1] = tmp[1];
qr[2] = tmp[2];
qr[3] = tmp[3];
}
static void export_vrml_module( MODEL_VRML& aModel, BOARD* aPcb,
MODULE* aModule, std::ostream* aOutputFile )
{
if( !aModel.m_plainPCB )
{
// Reference and value
if( aModule->Reference().IsVisible() )
export_vrml_text_module( &aModule->Reference() );
if( aModule->Value().IsVisible() )
export_vrml_text_module( &aModule->Value() );
// Export module edges
for( EDA_ITEM* item = aModule->GraphicalItemsList(); item; item = item->Next() )
{
switch( item->Type() )
{
case PCB_MODULE_TEXT_T:
export_vrml_text_module( static_cast<TEXTE_MODULE*>( item ) );
break;
case PCB_MODULE_EDGE_T:
export_vrml_edge_module( aModel, static_cast<EDGE_MODULE*>( item ),
aModule );
break;
default:
break;
}
}
}
2012-02-19 04:02:19 +00:00
// Export pads
for( D_PAD* pad = aModule->PadsList(); pad; pad = pad->Next() )
export_vrml_pad( aModel, aPcb, pad );
bool isFlipped = aModule->GetLayer() == B_Cu;
2012-02-19 04:02:19 +00:00
// Export the object VRML model(s)
auto sM = aModule->Models().begin();
auto eM = aModule->Models().end();
wxFileName subdir( SUBDIR_3D, "" );
while( sM != eM )
{
SGNODE* mod3d = (SGNODE*) cache->Load( sM->m_Filename );
if( NULL == mod3d )
{
++sM;
continue;
}
/* Calculate 3D shape rotation:
* this is the rotation parameters, with an additional 180 deg rotation
* for footprints that are flipped
* When flipped, axis rotation is the horizontal axis (X axis)
*/
double rotx = -sM->m_Rotation.x;
double roty = -sM->m_Rotation.y;
double rotz = -sM->m_Rotation.z;
if( isFlipped )
{
rotx += 180.0;
roty = -roty;
rotz = -rotz;
}
// Do some quaternion munching
double q1[4], q2[4], rot[4];
build_quat( 1, 0, 0, DEG2RAD( rotx ), q1 );
build_quat( 0, 1, 0, DEG2RAD( roty ), q2 );
compose_quat( q1, q2, q1 );
build_quat( 0, 0, 1, DEG2RAD( rotz ), q2 );
compose_quat( q1, q2, q1 );
// Note here aModule->GetOrientation() is in 0.1 degrees,
// so module rotation has to be converted to radians
build_quat( 0, 0, 1, DECIDEG2RAD( aModule->GetOrientation() ), q2 );
compose_quat( q1, q2, q1 );
from_quat( q1, rot );
double offsetFactor = 1000.0f * IU_PER_MILS / 25.4f;
// adjust 3D shape local offset position
// they are given in mm, so they are converted in board IU.
double offsetx = sM->m_Offset.x * offsetFactor;
double offsety = sM->m_Offset.y * offsetFactor;
double offsetz = sM->m_Offset.z * offsetFactor;
if( isFlipped )
offsetz = -offsetz;
else // In normal mode, Y axis is reversed in Pcbnew.
offsety = -offsety;
RotatePoint( &offsetx, &offsety, aModule->GetOrientation() );
SGPOINT trans;
trans.x = ( offsetx + aModule->GetPosition().x ) * BOARD_SCALE + aModel.m_tx;
trans.y = -(offsety + aModule->GetPosition().y) * BOARD_SCALE - aModel.m_ty;
trans.z = (offsetz * BOARD_SCALE ) + aModel.GetLayerZ( aModule->GetLayer() );
if( USE_INLINES )
{
wxFileName srcFile = cache->GetResolver()->ResolvePath( sM->m_Filename );
wxFileName dstFile;
dstFile.SetPath( SUBDIR_3D );
dstFile.SetName( srcFile.GetName() );
dstFile.SetExt( "wrl" );
// copy the file if necessary
wxDateTime srcModTime = srcFile.GetModificationTime();
wxDateTime destModTime = srcModTime;
destModTime.SetToCurrent();
if( dstFile.FileExists() )
destModTime = dstFile.GetModificationTime();
if( srcModTime != destModTime )
{
wxLogDebug( "Copying 3D model %s to %s.",
GetChars( srcFile.GetFullPath() ),
GetChars( dstFile.GetFullPath() ) );
wxString fileExt = srcFile.GetExt();
fileExt.LowerCase();
// copy VRML models and use the scenegraph library to
// translate other model types
if( fileExt == "wrl" )
{
if( !wxCopyFile( srcFile.GetFullPath(), dstFile.GetFullPath() ) )
continue;
}
else
{
if( !S3D::WriteVRML( dstFile.GetFullPath().ToUTF8(), true, mod3d, USE_DEFS, true ) )
continue;
}
}
(*aOutputFile) << "Transform {\n";
// only write a rotation if it is >= 0.1 deg
if( std::abs( rot[3] ) > 0.0001745 )
{
(*aOutputFile) << " rotation " << std::setprecision( 5 );
(*aOutputFile) << rot[0] << " " << rot[1] << " " << rot[2] << " " << rot[3] << "\n";
}
(*aOutputFile) << " translation " << std::setprecision( PRECISION );
(*aOutputFile) << trans.x << " ";
(*aOutputFile) << trans.y << " ";
(*aOutputFile) << trans.z << "\n";
(*aOutputFile) << " scale ";
(*aOutputFile) << sM->m_Scale.x << " ";
(*aOutputFile) << sM->m_Scale.y << " ";
(*aOutputFile) << sM->m_Scale.z << "\n";
(*aOutputFile) << " children [\n Inline {\n url \"";
if( USE_RELPATH )
{
wxFileName tmp = dstFile;
tmp.SetExt( "" );
tmp.SetName( "" );
tmp.RemoveLastDir();
dstFile.MakeRelativeTo( tmp.GetPath() );
}
wxString fn = dstFile.GetFullPath();
fn.Replace( "\\", "/" );
(*aOutputFile) << TO_UTF8( fn ) << "\"\n } ]\n";
(*aOutputFile) << " }\n";
}
else
{
IFSG_TRANSFORM* modelShape = new IFSG_TRANSFORM( aModel.m_OutputPCB.GetRawPtr() );
// only write a rotation if it is >= 0.1 deg
if( std::abs( rot[3] ) > 0.0001745 )
modelShape->SetRotation( SGVECTOR( rot[0], rot[1], rot[2] ), rot[3] );
modelShape->SetTranslation( trans );
modelShape->SetScale( SGPOINT( sM->m_Scale.x, sM->m_Scale.y, sM->m_Scale.z ) );
if( NULL == S3D::GetSGNodeParent( mod3d ) )
{
aModel.m_components.push_back( mod3d );
modelShape->AddChildNode( mod3d );
}
else
{
modelShape->AddRefNode( mod3d );
}
}
++sM;
}
}
bool PCB_EDIT_FRAME::ExportVRML_File( const wxString& aFullFileName, double aMMtoWRMLunit,
bool aExport3DFiles, bool aUseRelativePaths,
bool aUsePlainPCB, const wxString& a3D_Subdir,
double aXRef, double aYRef )
{
2014-06-08 10:35:42 +00:00
BOARD* pcb = GetBoard();
bool ok = true;
USE_INLINES = aExport3DFiles;
USE_DEFS = true;
USE_RELPATH = aUseRelativePaths;
cache = Prj().Get3DCacheManager();
PROJ_DIR = Prj().GetProjectPath();
SUBDIR_3D = a3D_Subdir;
MODEL_VRML model3d;
2014-06-08 10:35:42 +00:00
model_vrml = &model3d;
2016-10-10 23:54:32 +00:00
model3d.SetScale( aMMtoWRMLunit );
if( USE_INLINES )
2016-10-10 23:54:32 +00:00
{
BOARD_SCALE = MM_PER_IU / 2.54;
2016-10-10 23:54:32 +00:00
model3d.SetOffset( -aXRef / 2.54, aYRef / 2.54 );
}
else
2016-10-10 23:54:32 +00:00
{
BOARD_SCALE = MM_PER_IU;
2016-10-10 23:54:32 +00:00
model3d.SetOffset( -aXRef, aYRef );
}
// plain PCB or else PCB with copper and silkscreen
model3d.m_plainPCB = aUsePlainPCB;
try
{
++PCBNew * Removed Pcb_Frame argument from BOARD() constructor, since it precludes having a BOARD being edited by more than one editor, it was a bad design. And this meant removing m_PcbFrame from BOARD. * removed BOARD::SetWindowFrame(), and BOARD::m_PcbFrame * Removed the global BOARD_DESIGN_SETTINGS which was in class_board.cpp * added BOARD_DESIGN_SETTINGS to the BOARD class, a full instance * a couple dialogs now only change BOARD_DESIGN_SETTINGS when OK is pressed, such as dialog_mask_clearance, dialog_drc, etc. * Removed common/pcbcommon.cpp's int g_CurrentVersionPCB = 1 and replaced it with build_version.h's #define BOARD_FILE_VERSION, although there may be a better place for this constant. * Made the public functions in PARAM_CFG_ARRAY be type const. void SaveParam(..) const and void ReadParam(..) const * PARAM_CFG_BASE now has virtual destructor since we have various way of destroying the derived class and boost::ptr_vector must be told about this. * Pass const PARAM_CFG_ARRAY& instead of PARAM_CFG_ARRAY so that we can use an automatic PARAM_CFG_ARRAY which is on the stack.\ * PCB_EDIT_FRAME::GetProjectFileParameters() may no longer cache the array, since it has to access the current BOARD and the BOARD can change. Remember BOARD_DESIGN_SETTINGS are now in the BOARD. * Made the m_BoundingBox member private, this was a brutally hard task, and indicative of the lack of commitment to accessors and object oriented design on the part of KiCad developers. We must do better. Added BOARD::GetBoundingBox, SetBoundingBox(), ComputeBoundingBox(). * Added PCB_BASE_FRAME::GetBoardBoundingBox() which calls BOARD::ComputeBoundingBox()
2011-12-05 06:15:33 +00:00
2014-06-08 10:35:42 +00:00
// Preliminary computation: the z value for each layer
compute_layer_Zs(model3d, pcb);
2014-06-08 10:35:42 +00:00
// board edges and cutouts
export_vrml_board(model3d, pcb);
2014-06-08 10:35:42 +00:00
// Drawing and text on the board
if( !aUsePlainPCB )
export_vrml_drawings( model3d, pcb );
2014-06-08 10:35:42 +00:00
// Export vias and trackage
export_vrml_tracks( model3d, pcb );
2014-06-08 10:35:42 +00:00
// Export zone fills
if( !aUsePlainPCB )
export_vrml_zones( model3d, pcb);
if( USE_INLINES )
{
// check if the 3D Subdir exists - create if not
wxFileName subdir( SUBDIR_3D, "" );
if( ! subdir.DirExists() )
{
if( !wxDir::Make( subdir.GetFullPath() ) )
throw( std::runtime_error( "Could not create 3D model subdirectory" ) );
}
OPEN_OSTREAM( output_file, TO_UTF8( aFullFileName ) );
if( output_file.fail() )
{
std::ostringstream ostr;
ostr << "Could not open file '" << TO_UTF8( aFullFileName ) << "'";
throw( std::runtime_error( ostr.str().c_str() ) );
}
output_file.imbue( std::locale( "C" ) );
// Begin with the usual VRML boilerplate
wxString fn = aFullFileName;
fn.Replace( "\\" , "/" );
output_file << "#VRML V2.0 utf8\n";
output_file << "WorldInfo {\n";
output_file << " title \"" << TO_UTF8( fn ) << " - Generated by Pcbnew\"\n";
output_file << "}\n";
output_file << "Transform {\n";
output_file << " scale " << std::setprecision( PRECISION );
output_file << WORLD_SCALE << " ";
output_file << WORLD_SCALE << " ";
output_file << WORLD_SCALE << "\n";
output_file << " children [\n";
// Export footprints
for( MODULE* module = pcb->m_Modules; module != 0; module = module->Next() )
export_vrml_module( model3d, pcb, module, &output_file );
// write out the board and all layers
write_layers( model3d, pcb, TO_UTF8( aFullFileName ), &output_file );
// Close the outer 'transform' node
output_file << "]\n}\n";
CLOSE_STREAM( output_file );
}
else
{
// Export footprints
for( MODULE* module = pcb->m_Modules; module != 0; module = module->Next() )
export_vrml_module( model3d, pcb, module, NULL );
// write out the board and all layers
write_layers( model3d, pcb, TO_UTF8( aFullFileName ), NULL );
}
2014-06-08 10:35:42 +00:00
}
catch( const std::exception& e )
{
wxString msg;
msg << _( "IDF Export Failed:\n" ) << FROM_UTF8( e.what() );
wxMessageBox( msg );
2014-06-08 10:35:42 +00:00
ok = false;
}
2014-06-08 10:35:42 +00:00
return ok;
}
static SGNODE* getSGColor( VRML_COLOR_INDEX colorIdx )
{
if( colorIdx == -1 )
colorIdx = VRML_COLOR_PCB;
else if( colorIdx == VRML_COLOR_LAST )
return NULL;
if( sgmaterial[colorIdx] )
return sgmaterial[colorIdx];
IFSG_APPEARANCE vcolor( (SGNODE*) NULL );
VRML_COLOR* cp = &colors[colorIdx];
vcolor.SetSpecular( cp->spec_red, cp->spec_grn, cp->spec_blu );
vcolor.SetDiffuse( cp->diffuse_red, cp->diffuse_grn, cp->diffuse_blu );
vcolor.SetShininess( cp->shiny );
// NOTE: XXX - replace with a better equation; using this definition
// of ambient will not yield the best results
vcolor.SetAmbient( cp->ambient, cp->ambient, cp->ambient );
vcolor.SetTransparency( cp->transp );
sgmaterial[colorIdx] = vcolor.GetRawPtr();
return sgmaterial[colorIdx];
2017-11-02 20:41:29 +00:00
}
static void create_vrml_plane( IFSG_TRANSFORM& PcbOutput, VRML_COLOR_INDEX colorID,
VRML_LAYER* layer, double top_z, bool aTopPlane )
{
std::vector< double > vertices;
std::vector< int > idxPlane;
std::vector< int > idxSide;
if( !(*layer).Get2DTriangles( vertices, idxPlane, top_z, aTopPlane ) )
{
#ifdef DEBUG
do {
std::ostringstream ostr;
ostr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n";
ostr << " * [INFO] no vertex data";
wxLogDebug( "%s\n", ostr.str().c_str() );
} while( 0 );
#endif
return;
}
if( ( idxPlane.size() % 3 ) || ( idxSide.size() % 3 ) )
{
#ifdef DEBUG
do {
std::ostringstream ostr;
ostr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n";
ostr << " * [BUG] index lists are not a multiple of 3 (not a triangle list)";
wxLogDebug( "%s\n", ostr.str().c_str() );
} while( 0 );
#endif
throw( std::runtime_error( "[BUG] index lists are not a multiple of 3 (not a triangle list)" ) );
}
std::vector< SGPOINT > vlist;
size_t nvert = vertices.size() / 3;
size_t j = 0;
for( size_t i = 0; i < nvert; ++i, j+= 3 )
vlist.push_back( SGPOINT( vertices[j], vertices[j+1], vertices[j+2] ) );
// create the intermediate scenegraph
IFSG_TRANSFORM tx0( PcbOutput.GetRawPtr() ); // tx0 = Transform for this outline
IFSG_SHAPE shape( tx0 ); // shape will hold (a) all vertices and (b) a local list of normals
IFSG_FACESET face( shape ); // this face shall represent the top and bottom planes
IFSG_COORDS cp( face ); // coordinates for all faces
cp.SetCoordsList( nvert, &vlist[0] );
IFSG_COORDINDEX coordIdx( face ); // coordinate indices for top and bottom planes only
coordIdx.SetIndices( idxPlane.size(), &idxPlane[0] );
IFSG_NORMALS norms( face ); // normals for the top and bottom planes
// set the normals
if( aTopPlane )
{
for( size_t i = 0; i < nvert; ++i )
norms.AddNormal( 0.0, 0.0, 1.0 );
}
else
{
for( size_t i = 0; i < nvert; ++i )
norms.AddNormal( 0.0, 0.0, -1.0 );
}
// assign a color from the palette
SGNODE* modelColor = getSGColor( colorID );
if( NULL != modelColor )
{
if( NULL == S3D::GetSGNodeParent( modelColor ) )
shape.AddChildNode( modelColor );
else
shape.AddRefNode( modelColor );
}
return;
}
static void create_vrml_shell( IFSG_TRANSFORM& PcbOutput, VRML_COLOR_INDEX colorID,
VRML_LAYER* layer, double top_z, double bottom_z )
{
std::vector< double > vertices;
std::vector< int > idxPlane;
std::vector< int > idxSide;
if( top_z < bottom_z )
{
double tmp = top_z;
top_z = bottom_z;
bottom_z = tmp;
}
if( !(*layer).Get3DTriangles( vertices, idxPlane, idxSide, top_z, bottom_z ) )
{
#ifdef DEBUG
do {
std::ostringstream ostr;
ostr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n";
ostr << " * [INFO] no vertex data";
wxLogDebug( "%s\n", ostr.str().c_str() );
} while( 0 );
#endif
return;
}
if( ( idxPlane.size() % 3 ) || ( idxSide.size() % 3 ) )
{
#ifdef DEBUG
do {
std::ostringstream ostr;
ostr << __FILE__ << ": " << __FUNCTION__ << ": " << __LINE__ << "\n";
ostr << " * [BUG] index lists are not a multiple of 3 (not a triangle list)";
wxLogDebug( "%s\n", ostr.str().c_str() );
} while( 0 );
#endif
throw( std::runtime_error( "[BUG] index lists are not a multiple of 3 (not a triangle list)" ) );
}
std::vector< SGPOINT > vlist;
size_t nvert = vertices.size() / 3;
size_t j = 0;
for( size_t i = 0; i < nvert; ++i, j+= 3 )
vlist.push_back( SGPOINT( vertices[j], vertices[j+1], vertices[j+2] ) );
// create the intermediate scenegraph
IFSG_TRANSFORM tx0( PcbOutput.GetRawPtr() ); // tx0 = Transform for this outline
IFSG_SHAPE shape( tx0 ); // shape will hold (a) all vertices and (b) a local list of normals
IFSG_FACESET face( shape ); // this face shall represent the top and bottom planes
IFSG_COORDS cp( face ); // coordinates for all faces
cp.SetCoordsList( nvert, &vlist[0] );
IFSG_COORDINDEX coordIdx( face ); // coordinate indices for top and bottom planes only
coordIdx.SetIndices( idxPlane.size(), &idxPlane[0] );
IFSG_NORMALS norms( face ); // normals for the top and bottom planes
// number of TOP (and bottom) vertices
j = nvert / 2;
// set the TOP normals
for( size_t i = 0; i < j; ++i )
norms.AddNormal( 0.0, 0.0, 1.0 );
// set the BOTTOM normals
for( size_t i = 0; i < j; ++i )
norms.AddNormal( 0.0, 0.0, -1.0 );
// assign a color from the palette
SGNODE* modelColor = getSGColor( colorID );
if( NULL != modelColor )
{
if( NULL == S3D::GetSGNodeParent( modelColor ) )
shape.AddChildNode( modelColor );
else
shape.AddRefNode( modelColor );
}
// create a second shape describing the vertical walls of the extrusion
// using per-vertex-per-face-normals
shape.NewNode( tx0 );
shape.AddRefNode( modelColor ); // set the color to be the same as the top/bottom
face.NewNode( shape );
cp.NewNode( face ); // new vertex list
norms.NewNode( face ); // new normals list
coordIdx.NewNode( face ); // new index list
// populate the new per-face vertex list and its indices and normals
std::vector< int >::iterator sI = idxSide.begin();
std::vector< int >::iterator eI = idxSide.end();
size_t sidx = 0; // index to the new coord set
SGPOINT p1, p2, p3;
SGVECTOR vnorm;
while( sI != eI )
{
p1 = vlist[*sI];
cp.AddCoord( p1 );
++sI;
p2 = vlist[*sI];
cp.AddCoord( p2 );
++sI;
p3 = vlist[*sI];
cp.AddCoord( p3 );
++sI;
vnorm.SetVector( S3D::CalcTriNorm( p1, p2, p3 ) );
norms.AddNormal( vnorm );
norms.AddNormal( vnorm );
norms.AddNormal( vnorm );
coordIdx.AddIndex( (int)sidx );
++sidx;
coordIdx.AddIndex( (int)sidx );
++sidx;
coordIdx.AddIndex( (int)sidx );
++sidx;
}
}