kicad/pcbnew/exporters/export_vrml.cpp

1259 lines
40 KiB
C++
Raw Normal View History

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2009-2013 Lorenzo Mercantonio
* Copyright (C) 2014-2017 Cirilo Bernardo
* Copyright (C) 2018 Jean-Pierre Charras jp.charras at wanadoo.fr
* Copyright (C) 2004-2021 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
2014-06-08 10:35:42 +00:00
#include <exception>
#include <fstream>
#include <iomanip>
#include <vector>
#include <wx/dir.h>
2021-06-06 12:41:16 +00:00
#include <wx/msgdlg.h>
#include "3d_cache/3d_cache.h"
#include "3d_cache/3d_info.h"
#include "board.h"
#include "fp_shape.h"
#include "footprint.h"
#include "pcb_text.h"
#include "track.h"
#include "convert_to_biu.h"
#include <core/arraydim.h>
#include <filename_resolver.h>
#include "plugins/3dapi/ifsg_all.h"
#include "streamwrapper.h"
#include "vrml_layer.h"
2018-01-29 20:58:58 +00:00
#include "pcb_edit_frame.h"
2021-01-10 19:28:15 +00:00
#include <convert_basic_shapes_to_polygon.h>
#include <geometry/geometry_utils.h>
#include <macros.h>
#include <exporter_vrml.h>
2014-06-08 10:35:42 +00:00
EXPORTER_PCB_VRML::EXPORTER_PCB_VRML() :
m_OutputPCB( (SGNODE*) NULL )
{
m_ReuseDef = true;
m_precision = 6;
m_WorldScale = 1.0;
2021-03-19 13:48:04 +00:00
m_Cache3Dmodels = nullptr;
m_Pcb = nullptr;
m_UseInlineModelsInBrdfile = false;
m_UseRelPathIn3DModelFilename = false;
m_BoardToVrmlScale = MM_PER_IU;
for( int ii = 0; ii < VRML_COLOR_LAST; ++ii )
m_sgmaterial[ii] = nullptr;
for( unsigned i = 0; i < arrayDim( m_layer_z ); ++i )
m_layer_z[i] = 0;
// this default only makes sense if the output is in mm
m_brd_thickness = 1.6;
// pcb green
vrml_colors_list[VRML_COLOR_PCB] = VRML_COLOR(
0.12f, 0.20f, 0.19f, 0.01f, 0.03f, 0.01f, 0.0f, 0.0f, 0.0f, 0.8f, 0.0f, 0.02f );
// copper color
vrml_colors_list[VRML_COLOR_COPPER] = VRML_COLOR(
0.72f, 0.45f, 0.2f, 0.01f, 0.05f, 0.01f, 0.0f, 0.0f, 0.0f, 0.8f, 0.0f, 0.02f );
// silkscreen white
vrml_colors_list[VRML_COLOR_SILK] = VRML_COLOR(
0.7f, 0.7f, 0.9f, 0.1f, 0.1f, 0.1f, 0.0f, 0.0f, 0.0f, 0.9f, 0.0f, 0.02f );
// solder paste silver (gray)
vrml_colors_list[VRML_COLOR_PASTE] = VRML_COLOR( 0.4f, 0.4f, 0.4f, 0.2f, 0.2f, 0.2f, 0.0f,
0.0f, 0.0f, 0.8f, 0.0f, 0.8f );
// solder mask green with transparency
vrml_colors_list[VRML_COLOR_SOLDMASK] = VRML_COLOR(
0.07f, 0.3f, 0.12f, 0.01f, 0.03f, 0.01f, 0.0f, 0.0f, 0.0f, 0.8f, 0.25f, 0.02f );
SetOffset( 0.0, 0.0 );
}
EXPORTER_PCB_VRML::~EXPORTER_PCB_VRML()
{
// destroy any unassociated material appearances
for( int j = 0; j < VRML_COLOR_LAST; ++j )
{
if( m_sgmaterial[j] && NULL == S3D::GetSGNodeParent( m_sgmaterial[j] ) )
S3D::DestroyNode( m_sgmaterial[j] );
m_sgmaterial[j] = NULL;
}
if( !m_components.empty() )
{
IFSG_TRANSFORM tmp( false );
for( auto i : m_components )
{
tmp.Attach( i );
tmp.SetParent( NULL );
}
m_components.clear();
m_OutputPCB.Destroy();
}
}
bool EXPORTER_PCB_VRML::SetScale( double aWorldScale )
{
2014-06-08 10:35:42 +00:00
// set the scaling of the VRML world
if( aWorldScale < 0.001 || aWorldScale > 10.0 )
throw( std::runtime_error( "WorldScale out of range (valid range is 0.001 to 10.0)" ) );
2014-06-08 10:35:42 +00:00
m_OutputPCB.SetScale( aWorldScale * 2.54 );
m_WorldScale = aWorldScale * 2.54;
2014-06-08 10:35:42 +00:00
return true;
}
void EXPORTER_PCB_VRML::SetOffset( double aXoff, double aYoff )
{
m_tx = aXoff;
m_ty = -aYoff;
m_holes.SetVertexOffsets( aXoff, aYoff );
m_3D_board.SetVertexOffsets( aXoff, aYoff );
m_top_copper.SetVertexOffsets( aXoff, aYoff );
m_bot_copper.SetVertexOffsets( aXoff, aYoff );
m_top_silk.SetVertexOffsets( aXoff, aYoff );
m_bot_silk.SetVertexOffsets( aXoff, aYoff );
m_top_paste.SetVertexOffsets( aXoff, aYoff );
m_bot_paste.SetVertexOffsets( aXoff, aYoff );
m_top_soldermask.SetVertexOffsets( aXoff, aYoff );
m_bot_soldermask.SetVertexOffsets( aXoff, aYoff );
m_plated_holes.SetVertexOffsets( aXoff, aYoff );
}
bool EXPORTER_PCB_VRML::GetLayer3D( LAYER_NUM layer, VRML_LAYER** vlayer )
{
// select the VRML layer object to draw on; return true if
// a layer has been selected.
switch( layer )
{
case B_Cu: *vlayer = &m_bot_copper; return true;
case F_Cu: *vlayer = &m_top_copper; return true;
case B_SilkS: *vlayer = &m_bot_silk; return true;
case F_SilkS: *vlayer = &m_top_silk; return true;
case B_Mask: *vlayer = &m_bot_soldermask; return true;
case F_Mask: *vlayer = &m_top_soldermask; return true;
case B_Paste: *vlayer = &m_bot_paste; return true;
case F_Paste: *vlayer = &m_top_paste; return true;
default: return false;
}
}
void EXPORTER_PCB_VRML::ExportVrmlSolderMask()
{
SHAPE_POLY_SET holes, outlines = m_pcbOutlines;
// holes is the solder mask opening.
// the actual shape is the negative shape of mask opening.
PCB_LAYER_ID pcb_layer = F_Mask;
VRML_LAYER* vrmllayer = &m_top_soldermask;
for( int lcnt = 0; lcnt < 2; lcnt++ )
{
holes.RemoveAllContours();
outlines.RemoveAllContours();
outlines = m_pcbOutlines;
m_Pcb->ConvertBrdLayerToPolygonalContours( pcb_layer, holes );
outlines.BooleanSubtract( holes, SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
outlines.Fracture( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
ExportVrmlPolygonSet( vrmllayer, outlines );
pcb_layer = B_Mask;
vrmllayer = &m_bot_soldermask;
}
}
// Build and export the 4 layers F_Cu, B_Cu, F_silk, B_Silk
void EXPORTER_PCB_VRML::ExportStandardLayers()
{
SHAPE_POLY_SET outlines;
PCB_LAYER_ID pcb_layer[] =
{
F_Cu, B_Cu, F_SilkS, B_SilkS, F_Paste, B_Paste
};
VRML_LAYER* vrmllayer[] =
{
&m_top_copper, &m_bot_copper, &m_top_silk, &m_bot_silk, &m_top_paste, &m_bot_paste,
nullptr // Sentinel
};
for( int lcnt = 0; ; lcnt++ )
{
if( vrmllayer[lcnt] == nullptr )
break;
outlines.RemoveAllContours();
m_Pcb->ConvertBrdLayerToPolygonalContours( pcb_layer[lcnt], outlines );
outlines.Fracture( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
ExportVrmlPolygonSet( vrmllayer[lcnt], outlines );
}
}
// static var. for dealing with text
static EXPORTER_PCB_VRML* model_vrml;
void EXPORTER_PCB_VRML::write_triangle_bag( std::ostream& aOut_file, const VRML_COLOR& aColor,
VRML_LAYER* aLayer, bool aPlane, bool aTop,
double aTop_z, double aBottom_z )
{
/* A lot of nodes are not required, but blender sometimes chokes
* without them */
static const char* shape_boiler[] =
{
"Transform {\n",
" children [\n",
" Group {\n",
" children [\n",
" Shape {\n",
" appearance Appearance {\n",
" material Material {\n",
0, // Material marker
" }\n",
" }\n",
" geometry IndexedFaceSet {\n",
" solid TRUE\n",
" coord Coordinate {\n",
" point [\n",
0, // Coordinates marker
" ]\n",
" }\n",
" coordIndex [\n",
0, // Index marker
" ]\n",
" }\n",
" }\n",
" ]\n",
" }\n",
" ]\n",
"}\n",
0 // End marker
};
int marker_found = 0, lineno = 0;
while( marker_found < 4 )
{
if( shape_boiler[lineno] )
aOut_file << shape_boiler[lineno];
else
{
marker_found++;
switch( marker_found )
{
case 1: // Material marker
{
std::streamsize lastPrecision = aOut_file.precision();
aOut_file << " diffuseColor " << std::setprecision(3);
aOut_file << aColor.diffuse_red << " ";
aOut_file << aColor.diffuse_grn << " ";
aOut_file << aColor.diffuse_blu << "\n";
aOut_file << " specularColor ";
aOut_file << aColor.spec_red << " ";
aOut_file << aColor.spec_grn << " ";
aOut_file << aColor.spec_blu << "\n";
aOut_file << " emissiveColor ";
aOut_file << aColor.emit_red << " ";
aOut_file << aColor.emit_grn << " ";
aOut_file << aColor.emit_blu << "\n";
aOut_file << " ambientIntensity " << aColor.ambient << "\n";
aOut_file << " transparency " << aColor.transp << "\n";
aOut_file << " shininess " << aColor.shiny << "\n";
aOut_file.precision( lastPrecision );
}
break;
case 2:
if( aPlane )
aLayer->WriteVertices( aTop_z, aOut_file, m_precision );
else
aLayer->Write3DVertices( aTop_z, aBottom_z, aOut_file, m_precision );
aOut_file << "\n";
break;
case 3:
if( aPlane )
aLayer->WriteIndices( aTop, aOut_file );
else
aLayer->Write3DIndices( aOut_file );
aOut_file << "\n";
break;
default:
break;
}
}
lineno++;
}
}
void EXPORTER_PCB_VRML::writeLayers( const char* aFileName,
OSTREAM* aOutputFile )
{
// VRML_LAYER board;
m_3D_board.Tesselate( &m_holes );
double brdz = m_brd_thickness / 2.0
- ( Millimeter2iu( ART_OFFSET / 2.0 ) ) * m_BoardToVrmlScale;
if( m_UseInlineModelsInBrdfile )
{
write_triangle_bag( *aOutputFile, GetColor( VRML_COLOR_PCB ),
&m_3D_board, false, false, brdz, -brdz );
}
else
{
create_vrml_shell( m_OutputPCB, VRML_COLOR_PCB, &m_3D_board, brdz, -brdz );
}
// VRML_LAYER m_top_copper;
m_top_copper.Tesselate( &m_holes );
if( m_UseInlineModelsInBrdfile )
{
write_triangle_bag( *aOutputFile, GetColor( VRML_COLOR_COPPER ),
&m_top_copper, true, true, GetLayerZ( F_Cu ), 0 );
}
else
{
create_vrml_plane( m_OutputPCB, VRML_COLOR_COPPER, &m_top_copper,
GetLayerZ( F_Cu ), true );
}
// VRML_LAYER m_top_paste;
m_top_paste.Tesselate( &m_holes );
if( m_UseInlineModelsInBrdfile )
{
write_triangle_bag( *aOutputFile, GetColor( VRML_COLOR_PASTE ),
&m_top_paste, true, true,
GetLayerZ( F_Cu ) + Millimeter2iu( ART_OFFSET / 2.0 ) * m_BoardToVrmlScale,
0 );
}
else
{
create_vrml_plane( m_OutputPCB, VRML_COLOR_PASTE, &m_top_paste,
GetLayerZ( F_Cu ) + Millimeter2iu( ART_OFFSET / 2.0 ) * m_BoardToVrmlScale,
true );
}
// VRML_LAYER m_top_soldermask;
m_top_soldermask.Tesselate( &m_holes );
if( m_UseInlineModelsInBrdfile )
{
write_triangle_bag( *aOutputFile, GetColor( VRML_COLOR_SOLDMASK ),
&m_top_soldermask, true, true,
GetLayerZ( F_Cu ) + Millimeter2iu( ART_OFFSET / 2.0 ) * m_BoardToVrmlScale,
0 );
}
else
{
create_vrml_plane( m_OutputPCB, VRML_COLOR_SOLDMASK, &m_top_soldermask,
GetLayerZ( F_Cu ) + Millimeter2iu( ART_OFFSET / 2.0 ) * m_BoardToVrmlScale,
true );
}
// VRML_LAYER m_bot_copper;
m_bot_copper.Tesselate( &m_holes );
if( m_UseInlineModelsInBrdfile )
{
write_triangle_bag( *aOutputFile, GetColor( VRML_COLOR_COPPER ),
&m_bot_copper, true, false, GetLayerZ( B_Cu ), 0 );
}
else
{
create_vrml_plane( m_OutputPCB, VRML_COLOR_COPPER, &m_bot_copper,
GetLayerZ( B_Cu ), false );
}
// VRML_LAYER m_bot_paste;
m_bot_paste.Tesselate( &m_holes );
if( m_UseInlineModelsInBrdfile )
{
write_triangle_bag( *aOutputFile, GetColor( VRML_COLOR_PASTE ),
&m_bot_paste, true, false,
GetLayerZ( B_Cu )
- Millimeter2iu( ART_OFFSET / 2.0 ) * m_BoardToVrmlScale,
0 );
}
else
{
create_vrml_plane( m_OutputPCB, VRML_COLOR_PASTE, &m_bot_paste,
GetLayerZ( B_Cu ) - Millimeter2iu( ART_OFFSET / 2.0 ) * m_BoardToVrmlScale,
false );
}
// VRML_LAYER m_bot_mask:
m_bot_soldermask.Tesselate( &m_holes );
if( m_UseInlineModelsInBrdfile )
{
write_triangle_bag( *aOutputFile, GetColor( VRML_COLOR_SOLDMASK ),
&m_bot_soldermask, true, false,
GetLayerZ( B_Cu ) - Millimeter2iu( ART_OFFSET / 2.0 ) * m_BoardToVrmlScale,
0 );
}
else
{
create_vrml_plane( m_OutputPCB, VRML_COLOR_SOLDMASK, &m_bot_soldermask,
GetLayerZ( B_Cu ) - Millimeter2iu( ART_OFFSET / 2.0 ) * m_BoardToVrmlScale,
false );
}
// VRML_LAYER PTH;
m_plated_holes.Tesselate( NULL, true );
if( m_UseInlineModelsInBrdfile )
{
write_triangle_bag( *aOutputFile, GetColor( VRML_COLOR_PASTE ),
&m_plated_holes, false, false,
GetLayerZ( F_Cu ) + Millimeter2iu( ART_OFFSET / 2.0 ) * m_BoardToVrmlScale,
GetLayerZ( B_Cu ) - Millimeter2iu( ART_OFFSET / 2.0 ) * m_BoardToVrmlScale );
}
else
{
create_vrml_shell( m_OutputPCB, VRML_COLOR_PASTE, &m_plated_holes,
GetLayerZ( F_Cu ) + Millimeter2iu( ART_OFFSET / 2.0 ) * m_BoardToVrmlScale,
GetLayerZ( B_Cu ) - Millimeter2iu( ART_OFFSET / 2.0 ) * m_BoardToVrmlScale );
}
// VRML_LAYER m_top_silk;
m_top_silk.Tesselate( &m_holes );
if( m_UseInlineModelsInBrdfile )
{
write_triangle_bag( *aOutputFile, GetColor( VRML_COLOR_SILK ), &m_top_silk,
true, true, GetLayerZ( F_SilkS ), 0 );
}
else
{
create_vrml_plane( m_OutputPCB, VRML_COLOR_SILK, &m_top_silk,
GetLayerZ( F_SilkS ), true );
}
// VRML_LAYER m_bot_silk;
m_bot_silk.Tesselate( &m_holes );
if( m_UseInlineModelsInBrdfile )
{
write_triangle_bag( *aOutputFile, GetColor( VRML_COLOR_SILK ), &m_bot_silk,
true, false, GetLayerZ( B_SilkS ), 0 );
}
else
{
create_vrml_plane( m_OutputPCB, VRML_COLOR_SILK, &m_bot_silk,
GetLayerZ( B_SilkS ), false );
}
if( !m_UseInlineModelsInBrdfile )
S3D::WriteVRML( aFileName, true, m_OutputPCB.GetRawPtr(), true, true );
}
void EXPORTER_PCB_VRML::ComputeLayer3D_Zpos()
{
int copper_layers = m_Pcb->GetCopperLayerCount();
// We call it 'layer' thickness, but it's the whole board thickness!
m_brd_thickness = m_Pcb->GetDesignSettings().GetBoardThickness() * m_BoardToVrmlScale;
double half_thickness = m_brd_thickness / 2;
2012-02-19 04:02:19 +00:00
// Compute each layer's Z value, more or less like the 3d view
for( LSEQ seq = LSET::AllCuMask().Seq(); seq; ++seq )
{
PCB_LAYER_ID i = *seq;
if( i < copper_layers )
SetLayerZ( i, half_thickness - m_brd_thickness * i / (copper_layers - 1) );
else
SetLayerZ( i, - half_thickness ); // bottom layer
}
// To avoid rounding interference, we apply an epsilon to each successive layer
double epsilon_z = Millimeter2iu( ART_OFFSET ) * m_BoardToVrmlScale;
SetLayerZ( B_Paste, -half_thickness - epsilon_z );
SetLayerZ( B_Adhes, -half_thickness - epsilon_z );
SetLayerZ( B_SilkS, -half_thickness - epsilon_z * 3 );
SetLayerZ( B_Mask, -half_thickness - epsilon_z * 2 );
SetLayerZ( F_Mask, half_thickness + epsilon_z * 2 );
SetLayerZ( F_SilkS, half_thickness + epsilon_z * 3 );
SetLayerZ( F_Adhes, half_thickness + epsilon_z );
SetLayerZ( F_Paste, half_thickness + epsilon_z );
SetLayerZ( Dwgs_User, half_thickness + epsilon_z * 5 );
SetLayerZ( Cmts_User, half_thickness + epsilon_z * 6 );
SetLayerZ( Eco1_User, half_thickness + epsilon_z * 7 );
SetLayerZ( Eco2_User, half_thickness + epsilon_z * 8 );
SetLayerZ( Edge_Cuts, 0 );
}
void EXPORTER_PCB_VRML::ExportVrmlPolygonSet( VRML_LAYER* aVlayer, const SHAPE_POLY_SET& aOutlines )
{
// Polygons in SHAPE_POLY_SET must be without hole, i.e. holes must be linked
// previously to their main outline.
for( int icnt = 0; icnt < aOutlines.OutlineCount(); icnt++ )
{
const SHAPE_LINE_CHAIN& outline = aOutlines.COutline( icnt );
int seg = aVlayer->NewContour();
for( int jj = 0; jj < outline.PointCount(); jj++ )
{
if( !aVlayer->AddVertex( seg, outline.CPoint( jj ).x * m_BoardToVrmlScale,
-outline.CPoint( jj ).y * m_BoardToVrmlScale ) )
throw( std::runtime_error( aVlayer->GetError() ) );
}
aVlayer->EnsureWinding( seg, false );
}
}
// board edges and cutouts
void EXPORTER_PCB_VRML::ExportVrmlBoard()
{
if( !m_Pcb->GetBoardPolygonOutlines( m_pcbOutlines ) )
{
wxLogWarning( _( "Board outline is malformed. Run DRC for a full analysis." ) );
}
int seg;
for( int cnt = 0; cnt < m_pcbOutlines.OutlineCount(); cnt++ )
{
const SHAPE_LINE_CHAIN& outline = m_pcbOutlines.COutline( cnt );
seg = m_3D_board.NewContour();
for( int j = 0; j < outline.PointCount(); j++ )
{
m_3D_board.AddVertex( seg, (double)outline.CPoint(j).x * m_BoardToVrmlScale,
-((double)outline.CPoint(j).y * m_BoardToVrmlScale ) );
}
m_3D_board.EnsureWinding( seg, false );
// Generate board holes from outlines:
for( int ii = 0; ii < m_pcbOutlines.HoleCount( cnt ); ii++ )
{
const SHAPE_LINE_CHAIN& hole = m_pcbOutlines.Hole( cnt, ii );
seg = m_holes.NewContour();
if( seg < 0 )
{
wxLogError( _( "VRML Export Failed: Could not add holes to contours." ) );
return;
}
for( int j = 0; j < hole.PointCount(); j++ )
{
m_holes.AddVertex( seg, (double) hole.CPoint(j).x * m_BoardToVrmlScale,
-( (double) hole.CPoint(j).y * m_BoardToVrmlScale ) );
}
m_holes.EnsureWinding( seg, true );
}
}
}
// Max error allowed to approximate a circle by segments, in mm
static const double err_approx_max = 0.005;
void EXPORTER_PCB_VRML::ExportVrmlViaHoles()
{
PCB_LAYER_ID top_layer, bottom_layer;
for( TRACK* track : m_Pcb->Tracks() )
{
if( track->Type() != PCB_VIA_T )
continue;
const VIA* via = (const VIA*) track;
via->LayerPair( &top_layer, &bottom_layer );
2021-01-10 19:28:15 +00:00
// do not render a buried via
if( top_layer != F_Cu && bottom_layer != B_Cu )
return;
2021-01-10 19:28:15 +00:00
// Export all via holes to m_holes
double hole_radius = via->GetDrillValue() * m_BoardToVrmlScale / 2.0;
2021-01-10 19:28:15 +00:00
if( hole_radius <= 0 )
continue;
2021-01-10 19:28:15 +00:00
double x = via->GetStart().x * m_BoardToVrmlScale;
double y = via->GetStart().y * m_BoardToVrmlScale;
// Set the optimal number of segments to approximate a circle.
// SetArcParams needs a count max, and the minimal and maximal length
// of segments
int nsides = GetArcToSegmentCount( via->GetDrillValue(),
Millimeter2iu( err_approx_max ), 360.0 );
double minSegLength = M_PI * 2.0 * hole_radius / nsides;
double maxSegLength = minSegLength*2.0;
m_holes.SetArcParams( nsides*2, minSegLength, maxSegLength );
m_plated_holes.SetArcParams( nsides, minSegLength, maxSegLength );
m_holes.AddCircle( x, -y, hole_radius, true, true );
m_plated_holes.AddCircle( x, -y, hole_radius, true, false );
m_holes.ResetArcParams();
m_plated_holes.ResetArcParams();
}
}
void EXPORTER_PCB_VRML::ExportVrmlPadHole( PAD* aPad )
{
double hole_drill_w = (double) aPad->GetDrillSize().x * m_BoardToVrmlScale / 2.0;
double hole_drill_h = (double) aPad->GetDrillSize().y * m_BoardToVrmlScale / 2.0;
double hole_drill = std::min( hole_drill_w, hole_drill_h );
double hole_x = aPad->GetPosition().x * m_BoardToVrmlScale;
double hole_y = aPad->GetPosition().y * m_BoardToVrmlScale;
2012-02-19 04:02:19 +00:00
// Export the hole on the edge layer
if( hole_drill > 0 )
{
int nsides = GetArcToSegmentCount( hole_drill,
Millimeter2iu( err_approx_max ), 360.0 );
double minSegLength = M_PI * hole_drill / nsides;
double maxSegLength = minSegLength*2.0;
m_holes.SetArcParams( nsides*2, minSegLength, maxSegLength );
m_plated_holes.SetArcParams( nsides, minSegLength, maxSegLength );
bool pth = false;
if( ( aPad->GetAttribute() != PAD_ATTRIB::NPTH ) )
pth = true;
if( aPad->GetDrillShape() == PAD_DRILL_SHAPE_OBLONG )
{
2012-02-19 04:02:19 +00:00
// Oblong hole (slot)
if( pth )
{
m_holes.AddSlot( hole_x, -hole_y, hole_drill_w * 2.0 + PLATE_OFFSET,
hole_drill_h * 2.0 + PLATE_OFFSET,
aPad->GetOrientation()/10.0, true, true );
m_plated_holes.AddSlot( hole_x, -hole_y,
hole_drill_w * 2.0, hole_drill_h * 2.0,
aPad->GetOrientation()/10.0, true, false );
}
else
{
m_holes.AddSlot( hole_x, -hole_y, hole_drill_w * 2.0, hole_drill_h * 2.0,
aPad->GetOrientation()/10.0, true, false );
}
}
else
{
// Drill a round hole
if( pth )
{
m_holes.AddCircle( hole_x, -hole_y, hole_drill + PLATE_OFFSET, true, true );
m_plated_holes.AddCircle( hole_x, -hole_y, hole_drill, true, false );
}
else
{
m_holes.AddCircle( hole_x, -hole_y, hole_drill, true, false );
}
}
m_holes.ResetArcParams();
m_plated_holes.ResetArcParams();
}
}
2012-02-19 04:02:19 +00:00
// From axis/rot to quaternion
static void build_quat( double x, double y, double z, double a, double q[4] )
{
double sina = sin( a / 2 );
q[0] = x * sina;
q[1] = y * sina;
q[2] = z * sina;
q[3] = cos( a / 2 );
}
2012-02-19 04:02:19 +00:00
// From quaternion to axis/rot
static void from_quat( double q[4], double rot[4] )
{
rot[3] = acos( q[3] ) * 2;
for( int i = 0; i < 3; i++ )
rot[i] = q[i] / sin( rot[3] / 2 );
}
2012-02-19 04:02:19 +00:00
// Quaternion composition
static void compose_quat( double q1[4], double q2[4], double qr[4] )
{
double tmp[4];
tmp[0] = q2[3] * q1[0] + q2[0] * q1[3] + q2[1] * q1[2] - q2[2] * q1[1];
tmp[1] = q2[3] * q1[1] + q2[1] * q1[3] + q2[2] * q1[0] - q2[0] * q1[2];
tmp[2] = q2[3] * q1[2] + q2[2] * q1[3] + q2[0] * q1[1] - q2[1] * q1[0];
tmp[3] = q2[3] * q1[3] - q2[0] * q1[0] - q2[1] * q1[1] - q2[2] * q1[2];
qr[0] = tmp[0];
qr[1] = tmp[1];
qr[2] = tmp[2];
qr[3] = tmp[3];
}
void EXPORTER_PCB_VRML::ExportVrmlFootprint( FOOTPRINT* aFootprint,
std::ostream* aOutputFile )
{
// Export pad holes
2020-11-13 01:33:30 +00:00
for( PAD* pad : aFootprint->Pads() )
ExportVrmlPadHole( pad );
2020-11-13 01:33:30 +00:00
bool isFlipped = aFootprint->GetLayer() == B_Cu;
2012-02-19 04:02:19 +00:00
// Export the object VRML model(s)
2020-11-13 01:33:30 +00:00
auto sM = aFootprint->Models().begin();
auto eM = aFootprint->Models().end();
wxFileName subdir( m_Subdir3DFpModels, "" );
while( sM != eM )
{
SGNODE* mod3d = (SGNODE*) m_Cache3Dmodels->Load( sM->m_Filename );
if( NULL == mod3d )
{
++sM;
continue;
}
/* Calculate 3D shape rotation:
* this is the rotation parameters, with an additional 180 deg rotation
* for footprints that are flipped
* When flipped, axis rotation is the horizontal axis (X axis)
*/
double rotx = -sM->m_Rotation.x;
double roty = -sM->m_Rotation.y;
double rotz = -sM->m_Rotation.z;
if( isFlipped )
{
rotx += 180.0;
roty = -roty;
rotz = -rotz;
}
// Do some quaternion munching
double q1[4], q2[4], rot[4];
build_quat( 1, 0, 0, DEG2RAD( rotx ), q1 );
build_quat( 0, 1, 0, DEG2RAD( roty ), q2 );
compose_quat( q1, q2, q1 );
build_quat( 0, 0, 1, DEG2RAD( rotz ), q2 );
compose_quat( q1, q2, q1 );
2020-11-13 11:17:15 +00:00
// Note here aFootprint->GetOrientation() is in 0.1 degrees, so footprint rotation
// has to be converted to radians
2020-11-13 01:33:30 +00:00
build_quat( 0, 0, 1, DECIDEG2RAD( aFootprint->GetOrientation() ), q2 );
compose_quat( q1, q2, q1 );
from_quat( q1, rot );
double offsetFactor = 1000.0f * IU_PER_MILS / 25.4f;
// adjust 3D shape local offset position
// they are given in mm, so they are converted in board IU.
double offsetx = sM->m_Offset.x * offsetFactor;
double offsety = sM->m_Offset.y * offsetFactor;
double offsetz = sM->m_Offset.z * offsetFactor;
if( isFlipped )
offsetz = -offsetz;
else // In normal mode, Y axis is reversed in Pcbnew.
offsety = -offsety;
2020-11-13 01:33:30 +00:00
RotatePoint( &offsetx, &offsety, aFootprint->GetOrientation() );
SGPOINT trans;
trans.x = ( offsetx + aFootprint->GetPosition().x ) * m_BoardToVrmlScale + m_tx;
trans.y = -( offsety + aFootprint->GetPosition().y) * m_BoardToVrmlScale - m_ty;
trans.z = (offsetz * m_BoardToVrmlScale ) + GetLayerZ( aFootprint->GetLayer() );
if( m_UseInlineModelsInBrdfile )
{
wxFileName srcFile = m_Cache3Dmodels->GetResolver()->ResolvePath( sM->m_Filename );
wxFileName dstFile;
dstFile.SetPath( m_Subdir3DFpModels );
dstFile.SetName( srcFile.GetName() );
dstFile.SetExt( "wrl" );
// copy the file if necessary
wxDateTime srcModTime = srcFile.GetModificationTime();
wxDateTime destModTime = srcModTime;
destModTime.SetToCurrent();
if( dstFile.FileExists() )
destModTime = dstFile.GetModificationTime();
if( srcModTime != destModTime )
{
wxString fileExt = srcFile.GetExt();
fileExt.LowerCase();
// copy VRML models and use the scenegraph library to
// translate other model types
if( fileExt == "wrl" )
{
if( !wxCopyFile( srcFile.GetFullPath(), dstFile.GetFullPath() ) )
continue;
}
else
{
if( !S3D::WriteVRML( dstFile.GetFullPath().ToUTF8(), true, mod3d, m_ReuseDef, true ) )
continue;
}
}
(*aOutputFile) << "Transform {\n";
// only write a rotation if it is >= 0.1 deg
if( std::abs( rot[3] ) > 0.0001745 )
{
(*aOutputFile) << " rotation " << std::setprecision( 5 );
(*aOutputFile) << rot[0] << " " << rot[1] << " " << rot[2] << " " << rot[3] << "\n";
}
(*aOutputFile) << " translation " << std::setprecision( m_precision );
(*aOutputFile) << trans.x << " ";
(*aOutputFile) << trans.y << " ";
(*aOutputFile) << trans.z << "\n";
(*aOutputFile) << " scale ";
(*aOutputFile) << sM->m_Scale.x << " ";
(*aOutputFile) << sM->m_Scale.y << " ";
(*aOutputFile) << sM->m_Scale.z << "\n";
(*aOutputFile) << " children [\n Inline {\n url \"";
if( m_UseRelPathIn3DModelFilename )
{
wxFileName tmp = dstFile;
tmp.SetExt( "" );
tmp.SetName( "" );
tmp.RemoveLastDir();
dstFile.MakeRelativeTo( tmp.GetPath() );
}
wxString fn = dstFile.GetFullPath();
fn.Replace( "\\", "/" );
(*aOutputFile) << TO_UTF8( fn ) << "\"\n } ]\n";
(*aOutputFile) << " }\n";
}
else
{
IFSG_TRANSFORM* modelShape = new IFSG_TRANSFORM( m_OutputPCB.GetRawPtr() );
// only write a rotation if it is >= 0.1 deg
if( std::abs( rot[3] ) > 0.0001745 )
modelShape->SetRotation( SGVECTOR( rot[0], rot[1], rot[2] ), rot[3] );
modelShape->SetTranslation( trans );
modelShape->SetScale( SGPOINT( sM->m_Scale.x, sM->m_Scale.y, sM->m_Scale.z ) );
if( NULL == S3D::GetSGNodeParent( mod3d ) )
{
m_components.push_back( mod3d );
modelShape->AddChildNode( mod3d );
}
else
{
modelShape->AddRefNode( mod3d );
}
}
++sM;
}
}
bool PCB_EDIT_FRAME::ExportVRML_File( const wxString& aFullFileName, double aMMtoWRMLunit,
bool aExport3DFiles, bool aUseRelativePaths,
const wxString& a3D_Subdir,
double aXRef, double aYRef )
{
2014-06-08 10:35:42 +00:00
BOARD* pcb = GetBoard();
bool success = true;
EXPORTER_PCB_VRML model3d;
2014-06-08 10:35:42 +00:00
model_vrml = &model3d;
model3d.m_Pcb = GetBoard();
2016-10-10 23:54:32 +00:00
model3d.SetScale( aMMtoWRMLunit );
model3d.m_UseInlineModelsInBrdfile = aExport3DFiles;
model3d.m_Subdir3DFpModels = a3D_Subdir;
model3d.m_UseRelPathIn3DModelFilename = aUseRelativePaths;
model3d.m_Cache3Dmodels = Prj().Get3DCacheManager();
if( model3d.m_UseInlineModelsInBrdfile )
2016-10-10 23:54:32 +00:00
{
model3d.m_BoardToVrmlScale = MM_PER_IU / 2.54;
2016-10-10 23:54:32 +00:00
model3d.SetOffset( -aXRef / 2.54, aYRef / 2.54 );
}
else
2016-10-10 23:54:32 +00:00
{
model3d.m_BoardToVrmlScale = MM_PER_IU;
2016-10-10 23:54:32 +00:00
model3d.SetOffset( -aXRef, aYRef );
}
try
{
2014-06-08 10:35:42 +00:00
// Preliminary computation: the z value for each layer
model3d.ComputeLayer3D_Zpos();
2014-06-08 10:35:42 +00:00
// board edges and cutouts
model3d.ExportVrmlBoard();
// Draw solder mask layer (negative layer)
model3d.ExportVrmlSolderMask();
#if 1
model3d.ExportVrmlViaHoles();
model3d.ExportStandardLayers();
#else
2014-06-08 10:35:42 +00:00
// Drawing and text on the board
model3d.ExportVrmlDrawings();
2014-06-08 10:35:42 +00:00
// Export vias and trackage
model3d.ExportVrmlTracks();
2014-06-08 10:35:42 +00:00
// Export zone fills
model3d.ExportVrmlZones();
#endif
if( model3d.m_UseInlineModelsInBrdfile )
{
// Copy fp 3D models in a folder, and link these files in
// the board .vrml file
model3d.ExportFp3DModelsAsLinkedFile( aFullFileName );
}
else
{
// merge footprints in the .vrml board file
2020-11-13 15:15:52 +00:00
for( FOOTPRINT* footprint : pcb->Footprints() )
model3d.ExportVrmlFootprint( footprint, NULL );
// write out the board and all layers
model3d.writeLayers( TO_UTF8( aFullFileName ), NULL );
}
2014-06-08 10:35:42 +00:00
}
catch( const std::exception& e )
{
wxString msg;
msg << _( "IDF Export Failed:\n" ) << FROM_UTF8( e.what() );
wxMessageBox( msg );
success = false;
2014-06-08 10:35:42 +00:00
}
return success;
}
void EXPORTER_PCB_VRML::ExportFp3DModelsAsLinkedFile( const wxString& aFullFileName )
{
// check if the 3D Subdir exists - create if not
wxFileName subdir( m_Subdir3DFpModels, "" );
if( ! subdir.DirExists() )
{
if( !wxDir::Make( subdir.GetFullPath() ) )
throw( std::runtime_error( "Could not create 3D model subdirectory" ) );
}
OPEN_OSTREAM( output_file, TO_UTF8( aFullFileName ) );
if( output_file.fail() )
{
std::ostringstream ostr;
ostr << "Could not open file '" << TO_UTF8( aFullFileName ) << "'";
throw( std::runtime_error( ostr.str().c_str() ) );
}
output_file.imbue( std::locale::classic() );
// Begin with the usual VRML boilerplate
wxString fn = aFullFileName;
fn.Replace( "\\" , "/" );
output_file << "#VRML V2.0 utf8\n";
output_file << "WorldInfo {\n";
output_file << " title \"" << TO_UTF8( fn ) << " - Generated by Pcbnew\"\n";
output_file << "}\n";
output_file << "Transform {\n";
output_file << " scale " << std::setprecision( m_precision );
output_file << m_WorldScale << " ";
output_file << m_WorldScale << " ";
output_file << m_WorldScale << "\n";
output_file << " children [\n";
// Export footprints
for( FOOTPRINT* footprint : m_Pcb->Footprints() )
ExportVrmlFootprint( footprint, &output_file );
// write out the board and all layers
writeLayers( TO_UTF8( aFullFileName ), &output_file );
// Close the outer 'transform' node
output_file << "]\n}\n";
CLOSE_STREAM( output_file );
}
SGNODE* EXPORTER_PCB_VRML::getSGColor( VRML_COLOR_INDEX colorIdx )
{
if( colorIdx == -1 )
colorIdx = VRML_COLOR_PCB;
else if( colorIdx == VRML_COLOR_LAST )
return NULL;
if( m_sgmaterial[colorIdx] )
return m_sgmaterial[colorIdx];
IFSG_APPEARANCE vcolor( (SGNODE*) NULL );
VRML_COLOR* cp = &vrml_colors_list[colorIdx];
vcolor.SetSpecular( cp->spec_red, cp->spec_grn, cp->spec_blu );
vcolor.SetDiffuse( cp->diffuse_red, cp->diffuse_grn, cp->diffuse_blu );
vcolor.SetShininess( cp->shiny );
// NOTE: XXX - replace with a better equation; using this definition
// of ambient will not yield the best results
vcolor.SetAmbient( cp->ambient, cp->ambient, cp->ambient );
vcolor.SetTransparency( cp->transp );
m_sgmaterial[colorIdx] = vcolor.GetRawPtr();
return m_sgmaterial[colorIdx];
2017-11-02 20:41:29 +00:00
}
void EXPORTER_PCB_VRML::create_vrml_plane( IFSG_TRANSFORM& PcbOutput, VRML_COLOR_INDEX colorID,
VRML_LAYER* layer, double top_z, bool aTopPlane )
{
std::vector< double > vertices;
std::vector< int > idxPlane;
if( !( *layer ).Get2DTriangles( vertices, idxPlane, top_z, aTopPlane ) )
{
return;
}
if( ( idxPlane.size() % 3 ) )
{
throw( std::runtime_error( "[BUG] index lists are not a multiple of 3 (not a triangle list)" ) );
}
std::vector< SGPOINT > vlist;
size_t nvert = vertices.size() / 3;
size_t j = 0;
for( size_t i = 0; i < nvert; ++i, j+= 3 )
vlist.emplace_back( vertices[j], vertices[j+1], vertices[j+2] );
// create the intermediate scenegraph
IFSG_TRANSFORM tx0( PcbOutput.GetRawPtr() ); // tx0 = Transform for this outline
IFSG_SHAPE shape( tx0 ); // shape will hold (a) all vertices and (b) a local list of normals
IFSG_FACESET face( shape ); // this face shall represent the top and bottom planes
IFSG_COORDS cp( face ); // coordinates for all faces
cp.SetCoordsList( nvert, &vlist[0] );
IFSG_COORDINDEX coordIdx( face ); // coordinate indices for top and bottom planes only
coordIdx.SetIndices( idxPlane.size(), &idxPlane[0] );
IFSG_NORMALS norms( face ); // normals for the top and bottom planes
// set the normals
if( aTopPlane )
{
for( size_t i = 0; i < nvert; ++i )
norms.AddNormal( 0.0, 0.0, 1.0 );
}
else
{
for( size_t i = 0; i < nvert; ++i )
norms.AddNormal( 0.0, 0.0, -1.0 );
}
// assign a color from the palette
SGNODE* modelColor = getSGColor( colorID );
if( NULL != modelColor )
{
if( NULL == S3D::GetSGNodeParent( modelColor ) )
shape.AddChildNode( modelColor );
else
shape.AddRefNode( modelColor );
}
}
void EXPORTER_PCB_VRML::create_vrml_shell( IFSG_TRANSFORM& PcbOutput, VRML_COLOR_INDEX colorID,
VRML_LAYER* layer, double top_z, double bottom_z )
{
std::vector< double > vertices;
std::vector< int > idxPlane;
std::vector< int > idxSide;
if( top_z < bottom_z )
{
double tmp = top_z;
top_z = bottom_z;
bottom_z = tmp;
}
if( !( *layer ).Get3DTriangles( vertices, idxPlane, idxSide, top_z, bottom_z )
|| idxPlane.empty() || idxSide.empty() )
{
return;
}
if( ( idxPlane.size() % 3 ) || ( idxSide.size() % 3 ) )
{
throw( std::runtime_error( "[BUG] index lists are not a multiple of 3 (not a "
"triangle list)" ) );
}
std::vector< SGPOINT > vlist;
size_t nvert = vertices.size() / 3;
size_t j = 0;
for( size_t i = 0; i < nvert; ++i, j+= 3 )
vlist.emplace_back( vertices[j], vertices[j+1], vertices[j+2] );
// create the intermediate scenegraph
IFSG_TRANSFORM tx0( PcbOutput.GetRawPtr() ); // tx0 = Transform for this outline
IFSG_SHAPE shape( tx0 ); // shape will hold (a) all vertices and (b) a local list of normals
IFSG_FACESET face( shape ); // this face shall represent the top and bottom planes
IFSG_COORDS cp( face ); // coordinates for all faces
cp.SetCoordsList( nvert, &vlist[0] );
IFSG_COORDINDEX coordIdx( face ); // coordinate indices for top and bottom planes only
coordIdx.SetIndices( idxPlane.size(), &idxPlane[0] );
IFSG_NORMALS norms( face ); // normals for the top and bottom planes
// number of TOP (and bottom) vertices
j = nvert / 2;
// set the TOP normals
for( size_t i = 0; i < j; ++i )
norms.AddNormal( 0.0, 0.0, 1.0 );
// set the BOTTOM normals
for( size_t i = 0; i < j; ++i )
norms.AddNormal( 0.0, 0.0, -1.0 );
// assign a color from the palette
SGNODE* modelColor = getSGColor( colorID );
if( NULL != modelColor )
{
if( NULL == S3D::GetSGNodeParent( modelColor ) )
shape.AddChildNode( modelColor );
else
shape.AddRefNode( modelColor );
}
// create a second shape describing the vertical walls of the extrusion
// using per-vertex-per-face-normals
shape.NewNode( tx0 );
shape.AddRefNode( modelColor ); // set the color to be the same as the top/bottom
face.NewNode( shape );
cp.NewNode( face ); // new vertex list
norms.NewNode( face ); // new normals list
coordIdx.NewNode( face ); // new index list
// populate the new per-face vertex list and its indices and normals
std::vector< int >::iterator sI = idxSide.begin();
std::vector< int >::iterator eI = idxSide.end();
size_t sidx = 0; // index to the new coord set
SGPOINT p1, p2, p3;
SGVECTOR vnorm;
while( sI != eI )
{
p1 = vlist[*sI];
cp.AddCoord( p1 );
++sI;
p2 = vlist[*sI];
cp.AddCoord( p2 );
++sI;
p3 = vlist[*sI];
cp.AddCoord( p3 );
++sI;
vnorm.SetVector( S3D::CalcTriNorm( p1, p2, p3 ) );
norms.AddNormal( vnorm );
norms.AddNormal( vnorm );
norms.AddNormal( vnorm );
coordIdx.AddIndex( (int)sidx );
++sidx;
coordIdx.AddIndex( (int)sidx );
++sidx;
coordIdx.AddIndex( (int)sidx );
++sidx;
}
}