This simplifies the (already simple) SELECTION_AREA class. It is also
moved into KIGFX::PREVIEW and put in the common library, where it can be
reused by other GAL-aware tools (not just in Pcbnew) in future.
SELECTION now holds EDA_ITEMs not BOARD_ITEMs so various places had to
change to casting the selected items to BOARD_ITEMs.
Fixed compilation warnings on clang (Tom)
This means the dialog can be accessed from both GAL and legacy modes.
This also removes the use of static bools for passing the selection
states and instead used a struct of values passed in by the calling
code.
eeschema now supports arbitrary colors for all object types, and
pcbnew does in GAL canvas. When switching from GAL to legacy canvas,
pcbnew will convert colors to the nearest legacy color.
New virtual class ACTIONS is added as a member to EDA_DRAW_FRAME so
that the TOOL_DISPATCHER can have access to the appropriate derived
version of TranslateLegacyId()
This commit brings several changes:
- Add a footprint preview pane to the eeschema component selector
- Upgrade component list to wxTreeListCtrl
- Factor out wxTreeListCtrl subclass TWO_COLUMN_TREE_LIST which
patches a column size bug
- Linkify datasheet URL in info pane
This makes "rotate" into two separate TOOL_EVENTs, which each have a
"multiplier" parameter.
Also added is a namespace for 'free functions' that use TOOL_EVENT
public interfaces (perhaps with other inputs too) to centralise some
decision-making and calculations.
Fixes: lp:1660731
* https://bugs.launchpad.net/kicad/+bug/1660731
DIALOG_EXCHANGE_MODULE class now has its own header file in the
pcbnew/dialogs directory, and the xchgmod.cpp files was moved along with
it. This has two aims:
* (minor) Standardise the location of "base dialog" derived classes,
like most other dialogs in KiCad.
* (major) Allow inclusion of this dialog class into both legacy-mode
pcbframe.cpp and into GAL tools.
This implements the pad import/export to the board's master pad setting
in the GAL canvases.
Implemented as a new GAL tool: PAD_TOOL.
It uses the same dialog, which has been split out into its own files in
pcbnew/dialogs, rather than along with frame methods in
pcbnew/globaleditpad.cpp.
Fixes: lp:1619304
* https://bugs.launchpad.net/kicad/+bug/1619304
This plugin mechanism is enabled only if option -DKICAD_SCRIPTING_ACTION_MENU=ON (it is off by default)
It imply -DKICAD_SCRIPTING=0N
This is currently for testing purposes only for developers, not yet for users.
Add a class TOOL_MENU, which provides a management class for a
CONDITIONAL_MENU and a set of CONTEXT_MENUs. The aim of this is to
provide a central place where all TOOL_INTERACTIVEs can get a "basic"
context menu that either they or other tools can register new items and
sub-menus against.
This means that "top-level" tools no longer need to manage the lifetimes
of any CONTEXT_MENUs that they add, and can also delegate simple menu
display functions.
Add pcbnewPYTHON_wrap.cxx to the list of files to apply -Wno-suggest-override
compiler flag to prevent compiler warnings on file that is generated by SWIG.
This allows the warning to be active for code which would benefit from
it, but not spew hundreds of warnings for code over which KiCad does not
have control of the override specifiers.
*) Extend SWIG support deeper into the BOARD class.
*) Move swig *.i files into a directory identified for SWIG, in preparation
for a parallel universe involving Phoenix's SIP.
*) Move swig files which will be common to both eeschema and pcbnew into
common/swig.
*) Sketch out a "common" python module, and plan on dovetailing that into a
libkicad_shared.{dll,so}
*) Add common/swig/ki_exceptions.i and define a macro HANDLE_EXCEPTIONS()
which is to be applied to any function which needs C++ to python
exception translation.
*) Move the test for SWIG tool into top level CMakeLists.txt file for use
in all python modules beyond pcbnew, i.e. eeschema and common.
*) Add SWIG_MODULE_pcbnew_EXTRA_DEPS which generates a better Makefile, one
which rebuilds the swig generated *.cxx file when one of its dependencies
change.
*) Re-architect the board.i file so that it can be split into multiple *.i
files easily.
*) Make some KIWAY from python progress, in preparation for Modular KiCad
phase III.
* Move add_directory()s in main CMakeList.txt after all find_package()
macros are run so all flags in the main CMakeList.txt are propagated
to the sub-folder CMakeList.txt files.
* Remove commented out include of config.h
* Make the link maps only build on linux as -${TO_LINKER},-cref
-${TO_LINKER},-Map=blah just gives warnings on osx w/ clang
* Make the link maps only build with flag -DKICAD_MAKE_LINK_MAPS is
defined during CMake configuration as they are highly specific.
* Moved the code for setting link maps into the main CMakeList.txt
file to avoid duplication.
* Removed -D__ASSERTMACRO__ from osx as its no longer needed
* Removed a couple of other OSX only things that wouldn't work anyway
* Moved set (BU_CHMOD_BUNDLE_ITEMS) to the main CMakeList.txt as
otherwise it would only work for the KiCad build not the other
applications
* Made KICAD_SCRIPTING_MODULES enable KICAD_SCRIPTING as currently if
you have modules enabled without the scripting base it will on build.
This could be changed to a fatal error saying you need to also enable
scripting but it seems unnecessary.
* Removed duplication of pcbnew.py install code under modules and
scripting since you can't have modules without scripting now
* The resource setting for bitmap2component is too late in the CMakeLists.txt,
and is being ignored. Bitmap2component does not have an icon resource on
Windows. Moving the entire section resolves the issue.
* The other programs only have the mingw special case listed, not the generic
declaration for the resource file so added them.
* Prevent libcurl from inadvertently being initialized twice.
* Dynamically load libcurl only when required.
* Reduce the number of worker threads when loading footprint libraries to
prevent issues with the GitHub plugin.
* Actually install the contents of the pcbnew/scripting/plugins directory on
Windows and Linux
* Move the test for existence of a directory before adding it to the Python
system library paths when loading the Python plugins.
added the example gen_gerber_and_drill_files_board.py in demos, which shows how to do that.
Fix a Printf format issue (shown in Debug mode) in Libedit (%d used for a size_t, changed in %zu)
These settings are now not common to the board editor, because the footprint editor can be run outside the board editor.
download_boost.cmake: ignore .htm* files when installing boost. They are not used, and often have a very very long (and stupid) name which sometimes creates issues.
Fix issue when using a page layout file in project folder: eeschema and Pcbnew did not use it, unless using an absolute path.
Now, if the file path is nor absolute, it is seen as relative to the project (which is the expected behavior)
fp lib wizard: when pcbnew id compiled with USE_GITHUB_PLUGIN=OFF, the github plugin option is no more accessible (and the web viewer no more used).
* Make all files generated by make_lexer() dependencies of thier respective build targets.
* Make building Boost a dependency for all libraries.
* Remove duplicate make_lexer() call for Specctra lexer files.
* Many path related fixes.
* Fix execution of external applications.
* Update mac-osx.txt.
* Add top-level links for standalone applications inside OSX bundle.
* Fix document icons for Eeschema and pl_editor.
* Create individual bundles for standalone applications inside the main application bundle.
* Add usual 'site-packages' to python path in OSX bundle.
* Fix name of OSX bundle plugin folder.
* Fix creation of single app bundle with respect to scripting support.
* Cleanup scripting search paths for OSX.
* Fix some small CMake bugs from previous OSX build change.
* Optimize bundle file structure to be consistent with Apple specs.
* Add helper script for compiling wxWidgets and wxPython
* Update OSX build instructions.
* Compile all binaries into a single application bundle.
* Use CMake BundleUtilities to make application bundle relocatable.
* Restructure build output to directly create an image file.
* Fix default search paths.
* Set KIGITHUB environment variable.
* Added patch to fix wxWidgets so names for OSX.
* in file/library save as..., remove option to save a lib under the legacy format (which is not possible and creates an error message)
* if the current loaded lib is a legacy lib, when the user try to save or delete a footprint, displays a message which explains what the user should do.
* add a suitable dialog to select/create a .pretty folder library (a file dialog or a dir dialog coming from wxWidgets is not friendly usable.)
Eeschema, Pcbnew, and Cvpcb all run under the same process now,
FOR THE VERY FIRST TIME!
*) Added KIWAY::PlayerCreate(), PlayerClose(), and PlayersClose().
*) Factored FRAME_T into <frame_type.h> from ID_DRAWFRAME_TYPE.
*) Found that the following command line is helpful for collecting all the *.kiface
files into the <build>/kicad/ directory so that kicad can find them.
$ cp `find . -name '*.kiface'` kicad/
Maybe somebody will want to rework how the CMake files are organized so all
the binaries can go into the same place. See python-a-mingw-us.
*) This might fix the problem on the Mac where child process windows were not
coming to the front. See ->Raise() in kicad/mainframe.cpp.
*) You can set USE_KIFACE to 0 in kicad/mainframe.cpp to chain load child exes
instead of using the KIFACE modules directly, i.e. revert.
In PATCH_COMMAND, use patch instead of bzr patch if patch or patch.exe is found (mandatory to use msys2 because bzr patch does not work when using msys2)
! The initial testing of this commit should be done using a Debug build so that
all the wxASSERT()s are enabled. Also, be sure and keep enabled the
USE_KIWAY_DLLs option. The tree won't likely build without it. Turning it
off is senseless anyways. If you want stable code, go back to a prior version,
the one tagged with "stable".
* Relocate all functionality out of the wxApp derivative into more finely
targeted purposes:
a) DLL/DSO specific
b) PROJECT specific
c) EXE or process specific
d) configuration file specific data
e) configuration file manipulations functions.
All of this functionality was blended into an extremely large wxApp derivative
and that was incompatible with the desire to support multiple concurrently
loaded DLL/DSO's ("KIFACE")s and multiple concurrently open projects.
An amazing amount of organization come from simply sorting each bit of
functionality into the proper box.
* Switch to wxConfigBase from wxConfig everywhere except instantiation.
* Add classes KIWAY, KIFACE, KIFACE_I, SEARCH_STACK, PGM_BASE, PGM_KICAD,
PGM_SINGLE_TOP,
* Remove "Return" prefix on many function names.
* Remove obvious comments from CMakeLists.txt files, and from else() and endif()s.
* Fix building boost for use in a DSO on linux.
* Remove some of the assumptions in the CMakeLists.txt files that windows had
to be the host platform when building windows binaries.
* Reduce the number of wxStrings being constructed at program load time via
static construction.
* Pass wxConfigBase* to all SaveSettings() and LoadSettings() functions so that
these functions are useful even when the wxConfigBase comes from another
source, as is the case in the KICAD_MANAGER_FRAME.
* Move the setting of the KIPRJMOD environment variable into class PROJECT,
so that it can be moved into a project variable soon, and out of FP_LIB_TABLE.
* Add the KIWAY_PLAYER which is associated with a particular PROJECT, and all
its child wxFrames and wxDialogs now have a Kiway() member function which
returns a KIWAY& that that window tree branch is in support of. This is like
wxWindows DNA in that child windows get this member with proper value at time
of construction.
* Anticipate some of the needs for milestones B) and C) and make code
adjustments now in an effort to reduce work in those milestones.
* No testing has been done for python scripting, since milestone C) has that
being largely reworked and re-thought-out.
! The initial testing of this commit should be done using a Debug build so that
all the wxASSERT()s are enabled. Also, be sure and keep enabled the
USE_KIWAY_DLLs option. The tree won't likely build without it. Turning it
off is senseless anyways. If you want stable code, go back to a prior version,
the one tagged with "stable".
* Relocate all functionality out of the wxApp derivative into more finely
targeted purposes:
a) DLL/DSO specific
b) PROJECT specific
c) EXE or process specific
d) configuration file specific data
e) configuration file manipulations functions.
All of this functionality was blended into an extremely large wxApp derivative
and that was incompatible with the desire to support multiple concurrently
loaded DLL/DSO's ("KIFACE")s and multiple concurrently open projects.
An amazing amount of organization come from simply sorting each bit of
functionality into the proper box.
* Switch to wxConfigBase from wxConfig everywhere except instantiation.
* Add classes KIWAY, KIFACE, KIFACE_I, SEARCH_STACK, PGM_BASE, PGM_KICAD,
PGM_SINGLE_TOP,
* Remove "Return" prefix on many function names.
* Remove obvious comments from CMakeLists.txt files, and from else() and endif()s.
* Fix building boost for use in a DSO on linux.
* Remove some of the assumptions in the CMakeLists.txt files that windows had
to be the host platform when building windows binaries.
* Reduce the number of wxStrings being constructed at program load time via
static construction.
* Pass wxConfigBase* to all SaveSettings() and LoadSettings() functions so that
these functions are useful even when the wxConfigBase comes from another
source, as is the case in the KICAD_MANAGER_FRAME.
* Move the setting of the KIPRJMOD environment variable into class PROJECT,
so that it can be moved into a project variable soon, and out of FP_LIB_TABLE.
* Add the KIWAY_PLAYER which is associated with a particular PROJECT, and all
its child wxFrames and wxDialogs now have a Kiway() member function which
returns a KIWAY& that that window tree branch is in support of. This is like
wxWindows DNA in that child windows get this member with proper value at time
of construction.
* Anticipate some of the needs for milestones B) and C) and make code
adjustments now in an effort to reduce work in those milestones.
* No testing has been done for python scripting, since milestone C) has that
being largely reworked and re-thought-out.
To use multiple working threads. This entailed adding KiCad typedefs:
*) Add typedefs for MUTEX and MUTLOCK which mask the actual choices for the project.
*) Add FOOTPRINT_LIST::DisplayErrors( wxWindow* ) which is a single strategy for
showing aggregated load errors. Although what's there is only scaffolding
and needs a volunteer who knows HTML pretty well.
*) Ensure all callers of ReadFootprintFiles() use the new DisplayErrors() function.
*) Push utf8.cpp and utf8.h into common library for open use.
Now footprints, after loaded by reading a netlist are grouped by sheets by the footprints spread function, and the grouping is better.
Rename 2 files. Fix minor issues. Clean code
This response file is not expanded under mingw3 2 (mingw/gcc bug?), and the list of include paths, found in this file, is not taken in account.
Now, under mingw32+msys, when not cross-compiling, the response file is disabled.
Cvpcb, Pcbnew: fix a list of libs which should be added only when cross-compiling:
Previously, they were always added, which creates an issue with mingw/msy/ gcc 2.8.
Now they are added only when cross-compiling (this issue was noticeable only with msys+mingw version 2.8)
*) Set environment variable KISYSMOD before loading FP_LIB_TABLE so that
FP_LIB_TABLE::ROW::SetFullURI() can do substitution up front.
*) De-emphasize the lib path in some of the footprint frames but keep it
so the footprint editor can export a current library to another.
You can even export a GITHUB library to a pretty library for local
installation.
*) Start the PLUGIN options editor.
*) Enhance cursor positioning in DIALOG_FP_LIB_TABLE.