If the last three points of a tesselation are concave, we will never be
able to triangulate them. They were likely formed from a bad polygon,
so we will drop the triangle and return completed
Fixes https://gitlab.com/kicad/code/kicad/issues/9380
Changes a dot to be a square pixel (linewidth x linewidth). This allows
the removal of IU dependencies and ensures that a dot is always visible
on screen. Also makes sure that cairo is setting the current linewidth
during its stroke routines
Fixes https://gitlab.com/kicad/code/kicad/issues/9362
This ensures that the arc shapes remain correct after removing
a point belonging to an arc or inserting a point in the middle
of an arc.
Simplify implementation of Replace( ..., aP ). Now a Remove
operation followed by an Insert operation.
Improve QA test for SHAPE_LINE_CHAIN Append, Insert and Replace
Implement SHAPE_LINE_CHAIN::splitArc to break up an arc into two
Implement SHAPE_ARC::ConstructFromStartEndCenter and add qa test
m_shapes now has two possible indices. The first one is populated if
the point is associated with an arc and the second index is populated
if the point is shared between two arcs.
- Some are related to shape errors when the allowed error to approximate circle
by segment is large and arc radius small.
- fix the actual error used in ConvertToPolyline().
- Use SHAPE_ARC::DefaultAccuracyForPCB() instead of a fixed value as extra margin
in zones. It should not change something, because it is also a fixed value
(5 micrometers), but it is not a magic number.
-TransformArcToPolygon() fix some issues and add a new algo, based on the arc actual
outline shape (initial algo is still available in code, just in case).
Note also the transform is still not good: the same parameters are applied
to convert inner arc, outer arc and middle arc of a thick arc to segments.
But these parameters depend on arc radius (or circle radius) value.
Use the connecting straight tracks even if not exactly parallel - allow
an error margin configurable in ADVANCED_CFG (default 1 degree). Also
be less strict about end point matching and use the width of the track
as the criteria to determine suitability.
Finally, delete any short lengths of track at the end of the operation
and amend the arc end points to keep connectivity.
Fixes https://gitlab.com/kicad/code/kicad/-/issues/7967
The snap obeys only the Ctrl key and not the global preference setting
for drawsegments because rectangles are _always_ on H/V lines when drawn
Fixes https://gitlab.com/kicad/code/kicad/issues/5607
1) For a while now we've been using a calculated seg count from a given
maxError, and a correction factor to push the radius out so that all
the error is outside the arc/circle. However, the second calculation
(which pre-dates the first) is pretty much just the inverse of the first
(and yields nothing more than maxError back). This is particularly
sub-optimal given the cost of trig functions.
2) There are a lot of old optimizations to reduce segcounts in certain
situations, someting that our error-based calculation compensates for
anyway. (Smaller radii need fewer segments to meet the maxError
condition.) But perhaps more importantly we now surface maxError in the
UI and we don't really want to call it "Max deviation except when it's
not".
3) We were also clamping the segCount twice: once in the calculation
routine and once in most of it's callers. Furthermore, the caller
clamping was inconsistent (both in being done and in the clamping
value). We now clamp only in the calculation routine.
4) There's no reason to use the correction factors in the 3Dviewer;
it's just a visualization and whether the polygonization error is
inside or outside the shape isn't really material.
5) The arc-correction-disabling stuff (used for solder mask layer) was
somewhat fragile in that it depended on the caller to turn it back on
afterwards. It's now only exposed as a RAII object which automatically
cleans up when it goes out of scope.
6) There were also bugs in a couple of the polygonization routines where
we'd accumulate round-off error in adding up the segments and end up with
an overly long last segment (which of course would voilate the error
max). This was the cause of the linked bug and also some issues with vias
that we had fudged in the past with extra clearance.
Fixes https://gitlab.com/kicad/code/kicad/issues/5567
Partititioning small polygons causes excessive partitions when we use a
fixed number of cells per side. Partitioning by size keeps the
partition count limited and speeds the calculations.
Also adds an option to not partition the grid for elements (like 3d
raytracing) that do not need it.
Fixes https://gitlab.com/kicad/code/kicad/issues/5579
This implements a copper-layer RTree with functions for iterating over
the elements in a copper layer and providing Nearest Neighbor returns
for BOARD_CONNECTED_ITEMS