If the RP2040 is using the ring oscilator (ROSC) rather than the crystal
oscilator (XOSC) then flashing program will take much longer. As the XOSC is not
enabled at boot we should not assume it will be enabled before the debugger is
connected (or indeed at all), thus should use the longer timeout during load
commands.
Increasing spinner timeout to 500 means `tc_printf` is not called during
the `_flash_range_erase`. This is important as `_flash_range_erase` is
used when loading. This fixes the issue:
https://github.com/blacksphere/blackmagic/issues/875
Also adding spinner timeout counter to reduce bus traffic.
This reverts commit 61e237ec87.
This makes a CMSIS-DAP probe with version < 1.2 work again on DP V1 devices.
Status of other combination unknown:
DP V1 V2 V2/Multidrop
Probe
< 1.2 ok ok --
>= 1.2 ? ? ?
Clean static from probe
Some target probe functions used static RAM variables. This will fail if several of the same targets are in the JTAG/SWD chain and unnecessary remove RAM form the RAM pool if the target is not used. If the target needs more than one word, it allocated priv_storage is used. For a single needed word, one word has been added to the target structure as a union to allow decent naming.
Use one file in dfu and server
For STM32, provide 3 ways to handle
- BMP way (8 bytes)
- DFU way (12 Bytes)
- Full unique id (24 Bytes), as with STLINK(V3) Bootloader
Support the Raspberry Pico RP2040
Implement multi-drop
Recognize , erase, flash and usb_reset
Attach to the rescue DP will reset but attach itself fails.
- RP2040 show both DPs
- Multidrop test with STM32L552 and STM32H745 allows selection
with "-m 0x4500041" (H7), "-m 1" (L552) or "-m 0x01002927" (RP2040)
This adds support for the STM32WL series in stm32l4.c. These parts have
the same flash registers layout as the L4 series, but a different base.
Since there are already two sets of registers in this target file, this
adds support for register maps that can be customized for each device
ID.
This adds a TRY_CATCH around the adiv5_ap_read_id() in
adiv5_component_probe() and resets the DP when that happens.
It seems like the STM32WLE5 comes with the AP of the inactive core
enabled in a way that does not make it detectable, and the current code
times out and leaves the whole device hanging.
Catching the timeout and calling adiv5_dp_abort() seems to restore the
device to a useable state.
Tested on Seed LoRa-E5 (STM32E5JC).