The SAMD09 CPU is used in boards such as the Adafruit Seesaw. It has a
smaller amount of memory and flash than other SAMD ports.
This was tested with an Adafruit Seesaw. These boards come with preloaded
firmware. As a test, the firmware was dumped and flash was erased. Then,
flash was verified to be all zeroes. Finally, the firmware was loaded
back in:
(gdb) p/x *(unsigned int *)0@32
$8 = {0x20000f88, 0x1db, 0x1d1, 0x1d9, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1d9, 0x0, 0x0, 0xf5, 0x1081, 0x1d9, 0x1d9, 0x1d9, 0x1d9, 0x1d9, 0x1d9, 0x1d9, 0x0, 0x1d9, 0x1d9, 0x25e9, 0x0,
0x0, 0x1d9, 0x1d9, 0x1d9}
(gdb) dump ihex memory flash.ihex 0 8192
(gdb) mon erase_mass
Erase successful!
(gdb) p/x *(unsigned int *)0@32
$9 = {0xffffffff <repeats 32 times>}
(gdb) load flash.ihex
Loading section .sec1, size 0x2000 lma 0x0
Start address 0x00000000, load size 8192
Transfer rate: 5 KB/sec, 910 bytes/write.
(gdb) p/x *(unsigned int *)0@32
$10 = {0x20000f88, 0x1db, 0x1d1, 0x1d9, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1d9, 0x0, 0x0, 0xf5, 0x1081, 0x1d9, 0x1d9, 0x1d9, 0x1d9, 0x1d9, 0x1d9, 0x1d9, 0x0, 0x1d9, 0x1d9, 0x25e9, 0x0,
0x0, 0x1d9, 0x1d9, 0x1d9}
(gdb)
Signed-off-by: Sean Cross <sean@xobs.io>
Various SAMD devices have different amounts of memory. Up until now, all
SAMD devices have had the same amount, and therefore this value was
hardcoded to 32k of RAM and 256k of flash.
Add a parameter to the description field and set it to default to the
previous values. Use this description field when adding memories to the
target definition.
Signed-off-by: Sean Cross <sean@xobs.io>
The variable `start_time` indicates when a CRC32 operation began. This
variable is used to benchmark the speed of the CRC32 function.
Currently, this is tied to `PC_HOSTED`. However, the actual usage is
tied to `DEBUG_WARN`. This means that the variable is undefined when
`DEBUG_WARN` is defined and we're not configured for `PC_HOSTED` mode.
Add macro guards around this variable so that it is defined when
debugging is enabled, rather than only when building on `PC_HOSTED`.
Signed-off-by: Sean Cross <sean@xobs.io>
Workaround for CMSIS-DAP/Bulk debugger orbtrace that returns NO_ACK
with high values of TRNCNT. Perhaps only STM32F767 needs write to DHCSR
with high occupancy to catch the device in a moment not sleeping.
Expect signal integrity errors when using jumper cables. Often probes switch
the SWJ GPIO with highest speed, resulting in possible reflections. Additional
ground wires may help. If there is isolation between probe and targets,
additional ground wires are a must or ground shift will wrack the transfer!
The same buffer is used for both command and response, causing part of
the command to be overwritten before it’s retried. Solve this by saving
and restoring a copy of the command before retrying.
Stlink does not like low level access and aborts with STLINK_SWD_DP_ERROR.
Either our implementation still has faults or stlink can not handle
MINDP devices with BMP/Firmware also seemm not to like low level access,
either du to some hidden error in BMP or by design
the sdid bits correspond to s32k14x as well as s32k11x but i only have
access to the k14x variants so didn't bother w/ the k11x variants.
the memory/flash sizes also can come from the sdid bits, but the
splits still need to come from a lookup.
FIXME: One remote transaction still can only do up to 64 ticks, leaving
room for speed enhancement with larger transactions.
Firmware assumes (1LL << 65) == 0LL !
Fixes bug introduced with last commit( Recover from bad AP access)
Let STM32 timers run at 100 Hz against 10 Hz before.
Programming STM32F103 failed random (#900) with 20 ms timeout requested
against the 100 ms timeout granularity provided up to now.
STM32 Firmware only ticked at 10 hertz, so the sequence "low_access",
"set timeout", "send out 8 bit command", "read 3 bit result" when
reading "wait" and timer increment tick happening during that sequence
will already hits the timeout even so only mininal time has elapsed
and not the requested timeout.
E.g. AP1 on a STM32WLE5 points to a ROM table, but access to the ROM table
via AP1 hangs forever.
- Substantial reduce timeout when wait for a response. Valid access should
succeed fast.
- Abort AP access to free DP for other accesses
- Don't throw exception, only set dp->fault
- React on higher level