libsigrok/hardware/link-mso19/protocol.c

475 lines
12 KiB
C
Raw Normal View History

/*
2013-04-23 20:24:30 +00:00
* This file is part of the libsigrok project.
*
* Copyright (C) 2011 Daniel Ribeiro <drwyrm@gmail.com>
* Copyright (C) 2012 Renato Caldas <rmsc@fe.up.pt>
* Copyright (C) 2013 Lior Elazary <lelazary@yahoo.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "protocol.h"
/* serial protocol */
#define mso_trans(a, v) \
(((v) & 0x3f) | (((v) & 0xc0) << 6) | (((a) & 0xf) << 8) | \
((~(v) & 0x20) << 1) | ((~(v) & 0x80) << 7))
static const char mso_head[] = { 0x40, 0x4c, 0x44, 0x53, 0x7e };
static const char mso_foot[] = { 0x7e };
extern SR_PRIV struct sr_dev_driver link_mso19_driver_info;
static struct sr_dev_driver *di = &link_mso19_driver_info;
SR_PRIV int mso_send_control_message(struct sr_serial_dev_inst *serial,
uint16_t payload[], int n)
{
int i, w, ret, s = n * 2 + sizeof(mso_head) + sizeof(mso_foot);
char *p, *buf;
ret = SR_ERR;
if (serial->fd < 0)
goto ret;
if (!(buf = g_try_malloc(s))) {
sr_err("Failed to malloc message buffer.");
ret = SR_ERR_MALLOC;
goto ret;
}
p = buf;
memcpy(p, mso_head, sizeof(mso_head));
p += sizeof(mso_head);
for (i = 0; i < n; i++) {
*(uint16_t *) p = g_htons(payload[i]);
p += 2;
}
memcpy(p, mso_foot, sizeof(mso_foot));
w = 0;
while (w < s) {
ret = serial_write(serial, buf + w, s - w);
if (ret < 0) {
ret = SR_ERR;
goto free;
}
w += ret;
}
ret = SR_OK;
free:
g_free(buf);
ret:
return ret;
}
SR_PRIV int mso_configure_trigger(const struct sr_dev_inst *sdi)
2013-01-05 01:22:15 +00:00
{
struct dev_context *devc = sdi->priv;
uint16_t threshold_value = mso_calc_raw_from_mv(devc);
2013-01-05 01:22:15 +00:00
threshold_value = 0x153C;
uint8_t trigger_config = 0;
2013-01-05 01:22:15 +00:00
if (devc->trigger_slope)
trigger_config |= 0x04; //Trigger on falling edge
2013-01-05 01:22:15 +00:00
switch (devc->trigger_outsrc) {
case 1:
trigger_config |= 0x00; //Trigger pulse output
2013-01-05 01:22:15 +00:00
break;
case 2:
trigger_config |= 0x08; //PWM DAC from the pattern generator buffer
2013-01-05 01:22:15 +00:00
break;
case 3:
trigger_config |= 0x18; //White noise
2013-01-05 01:22:15 +00:00
break;
}
switch (devc->trigger_chan) {
case 0:
trigger_config |= 0x00; //DSO level trigger //b00000000
break;
case 1:
trigger_config |= 0x20; //DSO level trigger & width < trigger_width
break;
case 2:
trigger_config |= 0x40; //DSO level trigger & width >= trigger_width
break;
case 3:
trigger_config |= 0x60; //LA combination trigger
break;
}
//Last bit of trigger config reg 4 needs to be 1 for trigger enable,
//otherwise the trigger is not enabled
if (devc->use_trigger)
trigger_config |= 0x80;
uint16_t ops[18];
ops[0] = mso_trans(3, threshold_value & 0xff);
//The trigger_config also holds the 2 MSB bits from the threshold value
2013-01-08 16:00:57 +00:00
ops[1] = mso_trans(4, trigger_config | ((threshold_value >> 8) & 0x03));
ops[2] = mso_trans(5, devc->la_trigger);
ops[3] = mso_trans(6, devc->la_trigger_mask);
ops[4] = mso_trans(7, devc->trigger_holdoff[0]);
ops[5] = mso_trans(8, devc->trigger_holdoff[1]);
ops[6] = mso_trans(11,
devc->dso_trigger_width /
SR_HZ_TO_NS(devc->cur_rate));
2013-01-05 01:22:15 +00:00
/* Select the SPI/I2C trigger config bank */
ops[7] = mso_trans(REG_CTL2, (devc->ctlbase2 | BITS_CTL2_BANK(2)));
2013-01-05 01:22:15 +00:00
/* Configure the SPI/I2C protocol trigger */
ops[8] = mso_trans(REG_PT_WORD(0), devc->protocol_trigger.word[0]);
ops[9] = mso_trans(REG_PT_WORD(1), devc->protocol_trigger.word[1]);
ops[10] = mso_trans(REG_PT_WORD(2), devc->protocol_trigger.word[2]);
ops[11] = mso_trans(REG_PT_WORD(3), devc->protocol_trigger.word[3]);
ops[12] = mso_trans(REG_PT_MASK(0), devc->protocol_trigger.mask[0]);
ops[13] = mso_trans(REG_PT_MASK(1), devc->protocol_trigger.mask[1]);
ops[14] = mso_trans(REG_PT_MASK(2), devc->protocol_trigger.mask[2]);
ops[15] = mso_trans(REG_PT_MASK(3), devc->protocol_trigger.mask[3]);
ops[16] = mso_trans(REG_PT_SPIMODE, devc->protocol_trigger.spimode);
2013-01-05 01:22:15 +00:00
/* Select the default config bank */
ops[17] = mso_trans(REG_CTL2, devc->ctlbase2);
2013-01-05 01:22:15 +00:00
return mso_send_control_message(devc->serial, ARRAY_AND_SIZE(ops));
2013-01-05 01:22:15 +00:00
}
SR_PRIV int mso_configure_threshold_level(const struct sr_dev_inst *sdi)
2013-01-05 01:22:15 +00:00
{
struct dev_context *devc = sdi->priv;
return mso_dac_out(sdi, la_threshold_map[devc->la_threshold]);
}
SR_PRIV int mso_read_buffer(struct sr_dev_inst *sdi)
{
uint16_t ops[] = { mso_trans(REG_BUFFER, 0) };
struct dev_context *devc = sdi->priv;
sr_dbg("Requesting buffer dump.");
return mso_send_control_message(devc->serial, ARRAY_AND_SIZE(ops));
}
SR_PRIV int mso_arm(const struct sr_dev_inst *sdi)
2013-01-05 01:22:15 +00:00
{
struct dev_context *devc = sdi->priv;
uint16_t ops[] = {
mso_trans(REG_CTL1, devc->ctlbase1 | BIT_CTL1_RESETFSM),
mso_trans(REG_CTL1, devc->ctlbase1 | BIT_CTL1_ARM),
mso_trans(REG_CTL1, devc->ctlbase1),
};
sr_dbg("Requesting trigger arm.");
return mso_send_control_message(devc->serial, ARRAY_AND_SIZE(ops));
}
SR_PRIV int mso_force_capture(struct sr_dev_inst *sdi)
{
struct dev_context *devc = sdi->priv;
uint16_t ops[] = {
mso_trans(REG_CTL1, devc->ctlbase1 | 8),
mso_trans(REG_CTL1, devc->ctlbase1),
};
sr_dbg("Requesting forced capture.");
return mso_send_control_message(devc->serial, ARRAY_AND_SIZE(ops));
}
SR_PRIV int mso_dac_out(const struct sr_dev_inst *sdi, uint16_t val)
2013-01-05 01:22:15 +00:00
{
struct dev_context *devc = sdi->priv;
uint16_t ops[] = {
mso_trans(REG_DAC1, (val >> 8) & 0xff),
mso_trans(REG_DAC2, val & 0xff),
mso_trans(REG_CTL1, devc->ctlbase1 | BIT_CTL1_RESETADC),
};
sr_dbg("Setting dac word to 0x%x.", val);
return mso_send_control_message(devc->serial, ARRAY_AND_SIZE(ops));
}
SR_PRIV inline uint16_t mso_calc_raw_from_mv(struct dev_context * devc)
2013-01-05 01:22:15 +00:00
{
return (uint16_t) (0x200 -
((devc->dso_trigger_voltage / devc->dso_probe_attn) /
devc->vbit));
2013-01-05 01:22:15 +00:00
}
SR_PRIV int mso_parse_serial(const char *iSerial, const char *iProduct,
struct dev_context *devc)
{
unsigned int u1, u2, u3, u4, u5, u6;
2013-04-23 20:54:02 +00:00
(void)iProduct;
/* FIXME: This code is in the original app, but I think its
* used only for the GUI */
/* if (strstr(iProduct, "REV_02") || strstr(iProduct, "REV_03"))
devc->num_sample_rates = 0x16;
else
devc->num_sample_rates = 0x10; */
/* parse iSerial */
if (iSerial[0] != '4' || sscanf(iSerial, "%5u%3u%3u%1u%1u%6u",
&u1, &u2, &u3, &u4, &u5, &u6) != 6)
return SR_ERR;
devc->hwmodel = u4;
devc->hwrev = u5;
devc->vbit = u1 / 10000;
if (devc->vbit == 0)
devc->vbit = 4.19195;
devc->dac_offset = u2;
if (devc->dac_offset == 0)
devc->dac_offset = 0x1ff;
devc->offset_range = u3;
if (devc->offset_range == 0)
devc->offset_range = 0x17d;
/*
* FIXME: There is more code on the original software to handle
* bigger iSerial strings, but as I can't test on my device
* I will not implement it yet
*/
return SR_OK;
}
SR_PRIV int mso_reset_adc(struct sr_dev_inst *sdi)
{
struct dev_context *devc = sdi->priv;
uint16_t ops[2];
ops[0] = mso_trans(REG_CTL1, (devc->ctlbase1 | BIT_CTL1_RESETADC));
ops[1] = mso_trans(REG_CTL1, devc->ctlbase1);
devc->ctlbase1 |= BIT_CTL1_ADC_UNKNOWN4;
sr_dbg("Requesting ADC reset.");
return mso_send_control_message(devc->serial, ARRAY_AND_SIZE(ops));
}
SR_PRIV int mso_reset_fsm(struct sr_dev_inst *sdi)
{
struct dev_context *devc = sdi->priv;
uint16_t ops[1];
devc->ctlbase1 |= BIT_CTL1_RESETFSM;
ops[0] = mso_trans(REG_CTL1, devc->ctlbase1);
sr_dbg("Requesting ADC reset.");
return mso_send_control_message(devc->serial, ARRAY_AND_SIZE(ops));
}
SR_PRIV int mso_toggle_led(struct sr_dev_inst *sdi, int state)
{
struct dev_context *devc = sdi->priv;
uint16_t ops[1];
devc->ctlbase1 &= ~BIT_CTL1_LED;
if (state)
devc->ctlbase1 |= BIT_CTL1_LED;
ops[0] = mso_trans(REG_CTL1, devc->ctlbase1);
sr_dbg("Requesting LED toggle.");
return mso_send_control_message(devc->serial, ARRAY_AND_SIZE(ops));
}
SR_PRIV void stop_acquisition(const struct sr_dev_inst *sdi)
{
struct sr_datafeed_packet packet;
struct dev_context *devc;
devc = sdi->priv;
serial_source_remove(devc->serial);
/* Terminate session */
packet.type = SR_DF_END;
sr_session_send(sdi, &packet);
}
SR_PRIV int mso_clkrate_out(struct sr_serial_dev_inst *serial, uint16_t val)
{
uint16_t ops[] = {
mso_trans(REG_CLKRATE1, (val >> 8) & 0xff),
mso_trans(REG_CLKRATE2, val & 0xff),
};
sr_dbg("Setting clkrate word to 0x%x.", val);
return mso_send_control_message(serial, ARRAY_AND_SIZE(ops));
}
SR_PRIV int mso_configure_rate(const struct sr_dev_inst *sdi, uint32_t rate)
{
struct dev_context *devc = sdi->priv;
unsigned int i;
int ret = SR_ERR;
for (i = 0; i < ARRAY_SIZE(rate_map); i++) {
if (rate_map[i].rate == rate) {
devc->ctlbase2 = rate_map[i].slowmode;
2013-01-05 01:22:15 +00:00
ret = mso_clkrate_out(devc->serial, rate_map[i].val);
if (ret == SR_OK)
devc->cur_rate = rate;
return ret;
}
}
if (ret != SR_OK)
sr_err("Unsupported rate.");
return ret;
}
SR_PRIV int mso_check_trigger(struct sr_serial_dev_inst *serial, uint8_t *info)
{
uint16_t ops[] = { mso_trans(REG_TRIGGER, 0) };
int ret;
sr_dbg("Requesting trigger state.");
ret = mso_send_control_message(serial, ARRAY_AND_SIZE(ops));
if (info == NULL || ret != SR_OK)
return ret;
uint8_t buf = 0;
if (serial_read(serial, &buf, 1) != 1) /* FIXME: Need timeout */
ret = SR_ERR;
if (!info)
*info = buf;
sr_dbg("Trigger state is: 0x%x.", *info);
return ret;
}
SR_PRIV int mso_receive_data(int fd, int revents, void *cb_data)
{
struct sr_datafeed_packet packet;
struct sr_datafeed_logic logic;
struct sr_dev_inst *sdi;
GSList *l;
int i;
struct drv_context *drvc = di->priv;
/* Find this device's devc struct by its fd. */
struct dev_context *devc = NULL;
for (l = drvc->instances; l; l = l->next) {
sdi = l->data;
devc = sdi->priv;
if (devc->serial->fd == fd)
break;
devc = NULL;
}
if (!devc)
/* Shouldn't happen. */
return TRUE;
(void)revents;
uint8_t in[1024];
size_t s = serial_read(devc->serial, in, sizeof(in));
if (s <= 0)
return FALSE;
/* Check if we triggered, then send a command that we are ready
* to read the data */
if (devc->trigger_state != MSO_TRIGGER_DATAREADY) {
devc->trigger_state = in[0];
if (devc->trigger_state == MSO_TRIGGER_DATAREADY) {
mso_read_buffer(sdi);
devc->buffer_n = 0;
} else {
mso_check_trigger(devc->serial, NULL);
}
return TRUE;
}
/* the hardware always dumps 1024 samples, 24bits each */
if (devc->buffer_n < 3072) {
memcpy(devc->buffer + devc->buffer_n, in, s);
devc->buffer_n += s;
}
if (devc->buffer_n < 3072)
return TRUE;
/* do the conversion */
uint8_t logic_out[1024];
double analog_out[1024];
for (i = 0; i < 1024; i++) {
/* FIXME: Need to do conversion to mV */
analog_out[i] = (devc->buffer[i * 3] & 0x3f) |
((devc->buffer[i * 3 + 1] & 0xf) << 6);
2013-04-12 15:45:01 +00:00
(void)analog_out;
logic_out[i] = ((devc->buffer[i * 3 + 1] & 0x30) >> 4) |
((devc->buffer[i * 3 + 2] & 0x3f) << 2);
}
packet.type = SR_DF_LOGIC;
packet.payload = &logic;
logic.length = 1024;
logic.unitsize = 1;
logic.data = logic_out;
sr_session_send(cb_data, &packet);
devc->num_samples += 1024;
if (devc->limit_samples && devc->num_samples >= devc->limit_samples) {
sr_info("Requested number of samples reached.");
sdi->driver->dev_acquisition_stop(sdi, cb_data);
}
return TRUE;
}
SR_PRIV int mso_configure_probes(const struct sr_dev_inst *sdi)
{
struct dev_context *devc;
struct sr_probe *probe;
GSList *l;
char *tc;
devc = sdi->priv;
devc->la_trigger_mask = 0xFF; //the mask for the LA_TRIGGER (bits set to 0 matter, those set to 1 are ignored).
devc->la_trigger = 0x00; //The value of the LA byte that generates a trigger event (in that mode).
devc->dso_trigger_voltage = 3;
devc->dso_probe_attn = 1;
devc->trigger_outsrc = 0;
devc->trigger_chan = 3; //LA combination trigger
devc->use_trigger = FALSE;
for (l = sdi->probes; l; l = l->next) {
probe = (struct sr_probe *)l->data;
if (probe->enabled == FALSE)
continue;
int probe_bit = 1 << (probe->index);
if (!(probe->trigger))
continue;
devc->use_trigger = TRUE;
//Configure trigger mask and value.
for (tc = probe->trigger; *tc; tc++) {
devc->la_trigger_mask &= ~probe_bit;
if (*tc == '1')
devc->la_trigger |= probe_bit;
}
}
return SR_OK;
}