Implement the configuration setting TRIGGER_SOURCE with the
choices CH (logic channels) and TRG (external trigger input).
Also implement the TRIGGER_SLOPE setting for selecting the
edge to trigger on (rising or falling).
It turns out that all LWLA protocol responses consist either
of 32-bit units or of 32-bit units combined into 64-bit units.
Thus it makes sense to double the basic unit size for reading
from 16 bit to 32 bit.
We cannot do the same for command messages though, as those
actually do use 16-bit quantities in some places, and 32-bit
arguments are not always aligned to 32-bit boundaries.
(acquisition_state.xfer_buf_in): Change unit type to uint32_t,
and update related macros and code accordingly.
(LWLA_TO_UINT32): New macro to replace LWLA_READ32, operating
directly on 32-bit values instead of pointers to 16-bit units.
Make use of a compiler-recognized idiom for bitwise rotation
to efficiently swap the 16-bit halves of a 32-bit word.
(LWLA_TO_UINT16): New macro to replace LWLA_READ16.
(LWLA_READ64): Remove unused macro.
(LWLA_WORD_[0123]): Slightly simplify 16-bit word extraction.
The return code SR_ERR_ARG is intended for reporting unsupported
or inapplicable device configuration settings and is not a hard
error. In order to indicate failure of internal sanity checks,
use SR_ERR_BUG instead.
Without the cast non integer frequencies weren't possible (e.g. with a sampling
frequency of 50Hz we would end up with a signal frequency of 2Hz instead of
2.5Hz). The result were signals which had an incorrect number of samples per
period.
BugLink: http://sigrok.org/bugzilla/show_bug.cgi?id=297
Drivers interpreted the uint64 values to the SR_CONF_TRIGGER_SLOPE
configuration setting in different ways. In order to orthogonalize
the API, change the type of the setting to a string with the same
format as uses for logic probes.
Modify the bitstream loading routine to work directly with the
Raw Binary Files (.rbf) generated by Altera tools. Previously,
a custom format was used which was basically an RBF preceded by
a 4-byte header specifying the transfer length.
Move pre-acquisition hardware setup to the new config_commit()
callback. At the moment, the only setting applied at commit
time is switching the clock source, which involves uploading
a new bitstream to the FPGA.
Move setup of channels and trigger masks to the new probe
configuration callback. Although the actual hardware setup
still happens just before acquisition, the new approach
already has the advantage that invalid settings are caught
early.
Also, it turns out that the LWLA1034 allows triggering on
channels which are not enabled for data acquisition. This
feature is now supported as well.
Apparently, frontends may call scan() more than once to accumulate
multiple devices, so do not reset the instance list pointer at the
start of each scan. Also, number devices continuously across scans.
This change moves the handling of series differences out to the points in the
code where they actually matter, unifying the overall structure of the code.
It also adds new VS5000/DS1000 series equivalents for commands that were
previously only implemented on the later models.
After this change, trigger waiting and the 'Memory' data source are supported
on the VS5000/DS1000 series.
The maximum sample size that can be set on a device is now published
by sr_config_list(SR_CONF_LIMIT_SAMPLES). This returns a tuple of
uint64_t representing minimum and maximum number of samples.
Report settings at acquisition start as informational messages.
Print a message when the the trigger condition has been met.
Demote some other messages from information to debug, and use
the %zu format for printing size_t values.
(process_sample_data): When expanding run-length samples into
session packets, calculate the number of samples to write in
advance while honoring all constraints. This is cleaner than
checking constraints within the expansion loop. Also, the new
logic always fills up packets exactly to whatever limit applies
first, thereby removing the need for truncation after the fact.
Allow the acquisition to be constrained by time in addition to
a sample count limit. Since the LWLA protocol actually provides
only a duration natively, implement the sample count limit on top
of the new duration limit.
With this change, limiting an acquisition in external clock mode
should finally work properly.
This adds sine wave generation capabilities for the analog channels in the demo
driver. The frequency of the sine wave depends on the configured sample rate of
the demo device. The frequency of the sine wave is always 20 times smaller than
the sample rate, in other words we always have 20 samples per period.