kicad/pcbnew/class_track.cpp

1638 lines
43 KiB
C++
Raw Normal View History

/*
* This program source code file is part of KiCad, a free EDA CAD application.
*
* Copyright (C) 2012 Jean-Pierre Charras, jean-pierre.charras@ujf-grenoble.fr
* Copyright (C) 2012 SoftPLC Corporation, Dick Hollenbeck <dick@softplc.com>
* Copyright (C) 2012 Wayne Stambaugh <stambaughw@verizon.net>
* Copyright (C) 1992-2012 KiCad Developers, see AUTHORS.txt for contributors.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you may find one here:
* http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
* or you may search the http://www.gnu.org website for the version 2 license,
* or you may write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
/**
* @file class_track.h
* @brief Functions relatives to tracks, vias and segments used to fill zones.
*/
#include <fctsys.h>
#include <gr_basic.h>
#include <common.h>
#include <trigo.h>
#include <macros.h>
#include <class_drawpanel.h>
#include <class_pcb_screen.h>
#include <drawtxt.h>
#include <pcbcommon.h>
#include <colors_selection.h>
#include <wxstruct.h>
#include <wxBasePcbFrame.h>
#include <class_board.h>
#include <class_track.h>
#include <pcbnew.h>
#include <base_units.h>
#include <msgpanel.h>
/**
* Function ShowClearance
* tests to see if the clearance border is drawn on the given track.
* @return bool - true if should draw clearance, else false.
*/
static bool ShowClearance( const TRACK* aTrack )
{
// maybe return true for tracks and vias, not for zone segments
return IsCopperLayer( aTrack->GetLayer() )
&& ( aTrack->Type() == PCB_TRACE_T || aTrack->Type() == PCB_VIA_T )
&& ( ( DisplayOpt.ShowTrackClearanceMode == SHOW_CLEARANCE_NEW_AND_EDITED_TRACKS_AND_VIA_AREAS
&& ( aTrack->IsDragging() || aTrack->IsMoving() || aTrack->IsNew() ) )
|| ( DisplayOpt.ShowTrackClearanceMode == SHOW_CLEARANCE_ALWAYS )
);
}
/*
* return true if the dist between p1 and p2 < max_dist
* Currently in test (currently ratsnest algos work only if p1 == p2)
*/
inline bool IsNear( wxPoint& p1, wxPoint& p2, int max_dist )
{
#if 0 // Do not change it: does not work
int dist;
dist = abs( p1.x - p2.x ) + abs( p1.y - p2.y );
dist *= 7;
dist /= 10;
if ( dist < max_dist )
return true;
#else
if ( p1 == p2 )
return true;
#endif
return false;
}
TRACK* GetTrace( TRACK* aStartTrace, TRACK* aEndTrace, const wxPoint& aPosition,
LAYER_MSK aLayerMask )
{
TRACK* PtSegm;
if( aStartTrace == NULL )
return NULL;
for( PtSegm = aStartTrace; PtSegm != NULL; PtSegm = PtSegm->Next() )
{
if( PtSegm->GetState( IS_DELETED | BUSY ) == 0 )
{
if( aPosition == PtSegm->GetStart() )
{
if( aLayerMask & PtSegm->GetLayerMask() )
return PtSegm;
}
if( aPosition == PtSegm->GetEnd() )
{
if( aLayerMask & PtSegm->GetLayerMask() )
return PtSegm;
}
}
if( PtSegm == aEndTrace )
break;
}
return NULL;
}
TRACK::TRACK( BOARD_ITEM* aParent, KICAD_T idtype ) :
BOARD_CONNECTED_ITEM( aParent, idtype )
{
m_Width = Millimeter2iu( 0.2 );
2007-10-19 06:31:17 +00:00
m_Shape = S_SEGMENT;
start = end = NULL;
SetDrillDefault();
2007-10-19 06:31:17 +00:00
m_Param = 0;
}
2007-08-08 20:51:08 +00:00
EDA_ITEM* TRACK::Clone() const
{
return new TRACK( *this );
}
wxString TRACK::ShowWidth() const
2007-10-11 00:11:59 +00:00
{
wxString msg = ::CoordinateToString( m_Width );
2007-10-11 00:11:59 +00:00
return msg;
}
2007-08-09 01:41:30 +00:00
SEGZONE::SEGZONE( BOARD_ITEM* aParent ) :
TRACK( aParent, PCB_ZONE_T )
{
}
2007-08-08 20:51:08 +00:00
EDA_ITEM* SEGZONE::Clone() const
{
return new SEGZONE( *this );
}
wxString SEGZONE::GetSelectMenuText() const
{
wxString text, nettxt;
BOARD* board = GetBoard();
if( board )
{
nettxt = GetNetname();
}
else
{
wxFAIL_MSG( wxT( "SEGZONE::GetSelectMenuText: BOARD is NULL" ) );
nettxt = wxT( "???" );
}
text.Printf( _( "Zone (%08lX) [%s] on %s" ),
m_TimeStamp, GetChars( nettxt ), GetChars( GetLayerName() ) );
return text;
}
SEGVIA::SEGVIA( BOARD_ITEM* aParent ) :
TRACK( aParent, PCB_VIA_T )
{
SetShape( VIA_THROUGH );
m_Width = Millimeter2iu( 0.5 );
}
2007-08-08 20:51:08 +00:00
EDA_ITEM* SEGVIA::Clone() const
{
return new SEGVIA( *this );
}
wxString SEGVIA::GetSelectMenuText() const
{
wxString text;
wxString format;
BOARD* board = GetBoard();
2011-12-14 04:29:25 +00:00
int shape = GetShape();
if( shape == VIA_BLIND_BURIED )
format = _( "Blind/Buried Via %s, net[%s] (%d) on layers %s/%s" );
else if( shape == VIA_MICROVIA )
format = _( "Micro Via %s, Net [%s] (%d) on layers %s/%s" );
// else say nothing about normal (through) vias
else format = _( "Via %s net [%s] (%d) on layers %s/%s" );
if( board )
{
wxString netname = GetNetname();
// say which layers, only two for now
LAYER_NUM topLayer;
LAYER_NUM botLayer;
* KIWAY Milestone A): Make major modules into DLL/DSOs. ! The initial testing of this commit should be done using a Debug build so that all the wxASSERT()s are enabled. Also, be sure and keep enabled the USE_KIWAY_DLLs option. The tree won't likely build without it. Turning it off is senseless anyways. If you want stable code, go back to a prior version, the one tagged with "stable". * Relocate all functionality out of the wxApp derivative into more finely targeted purposes: a) DLL/DSO specific b) PROJECT specific c) EXE or process specific d) configuration file specific data e) configuration file manipulations functions. All of this functionality was blended into an extremely large wxApp derivative and that was incompatible with the desire to support multiple concurrently loaded DLL/DSO's ("KIFACE")s and multiple concurrently open projects. An amazing amount of organization come from simply sorting each bit of functionality into the proper box. * Switch to wxConfigBase from wxConfig everywhere except instantiation. * Add classes KIWAY, KIFACE, KIFACE_I, SEARCH_STACK, PGM_BASE, PGM_KICAD, PGM_SINGLE_TOP, * Remove "Return" prefix on many function names. * Remove obvious comments from CMakeLists.txt files, and from else() and endif()s. * Fix building boost for use in a DSO on linux. * Remove some of the assumptions in the CMakeLists.txt files that windows had to be the host platform when building windows binaries. * Reduce the number of wxStrings being constructed at program load time via static construction. * Pass wxConfigBase* to all SaveSettings() and LoadSettings() functions so that these functions are useful even when the wxConfigBase comes from another source, as is the case in the KICAD_MANAGER_FRAME. * Move the setting of the KIPRJMOD environment variable into class PROJECT, so that it can be moved into a project variable soon, and out of FP_LIB_TABLE. * Add the KIWAY_PLAYER which is associated with a particular PROJECT, and all its child wxFrames and wxDialogs now have a Kiway() member function which returns a KIWAY& that that window tree branch is in support of. This is like wxWindows DNA in that child windows get this member with proper value at time of construction. * Anticipate some of the needs for milestones B) and C) and make code adjustments now in an effort to reduce work in those milestones. * No testing has been done for python scripting, since milestone C) has that being largely reworked and re-thought-out.
2014-03-20 00:42:08 +00:00
LayerPair( &topLayer, &botLayer );
text.Printf( format.GetData(), GetChars( ShowWidth() ),
GetChars( netname ), GetNetCode(),
GetChars( board->GetLayerName( topLayer ) ),
GetChars( board->GetLayerName( botLayer ) ) );
}
else
{
wxFAIL_MSG( wxT( "SEGVIA::GetSelectMenuText: BOARD is NULL" ) );
text.Printf( format.GetData(), GetChars( ShowWidth() ),
wxT( "???" ), 0,
wxT( "??" ), wxT( "??" ) );
}
return text;
}
int TRACK::GetClearance( BOARD_CONNECTED_ITEM* aItem ) const
{
// Currently tracks have no specific clearance parameter on a per track or per
// segment basis. The NETCLASS clearance is used.
return BOARD_CONNECTED_ITEM::GetClearance( aItem );
}
2007-09-01 12:00:30 +00:00
2008-02-09 08:34:45 +00:00
int TRACK::GetDrillValue() const
{
if( Type() != PCB_VIA_T )
2008-02-09 08:34:45 +00:00
return 0;
if( m_Drill > 0 ) // Use the specific value.
2008-02-09 08:34:45 +00:00
return m_Drill;
// Use the default value from the Netclass
NETCLASS* netclass = GetNetClass();
if( m_Shape == VIA_MICROVIA )
return netclass->GetuViaDrill();
return netclass->GetViaDrill();
}
bool TRACK::IsNull()
{
if( ( Type() != PCB_VIA_T ) && ( m_Start == m_End ) )
return true;
2007-08-08 20:51:08 +00:00
else
return false;
}
2007-08-08 20:51:08 +00:00
STATUS_FLAGS TRACK::IsPointOnEnds( const wxPoint& point, int min_dist )
{
STATUS_FLAGS result = 0;
2007-08-08 20:51:08 +00:00
if( min_dist < 0 )
min_dist = m_Width / 2;
2007-08-08 20:51:08 +00:00
if( min_dist == 0 )
2007-08-08 20:51:08 +00:00
{
2013-05-04 11:57:09 +00:00
if( m_Start == point )
2007-08-08 20:51:08 +00:00
result |= STARTPOINT;
2013-05-04 11:57:09 +00:00
if( m_End == point )
result |= ENDPOINT;
2007-08-08 20:51:08 +00:00
}
else
{
2013-05-04 11:57:09 +00:00
double dist = GetLineLength( m_Start, point );
if( min_dist >= KiROUND( dist ) )
2007-08-08 20:51:08 +00:00
result |= STARTPOINT;
2013-05-04 11:57:09 +00:00
dist = GetLineLength( m_End, point );
if( min_dist >= KiROUND( dist ) )
2007-08-08 20:51:08 +00:00
result |= ENDPOINT;
}
return result;
}
2007-08-08 20:51:08 +00:00
const EDA_RECT TRACK::GetBoundingBox() const
2008-03-05 22:39:33 +00:00
{
2008-03-10 13:33:12 +00:00
// end of track is round, this is its radius, rounded up
int radius = ( m_Width + 1 ) / 2;
2008-03-05 22:39:33 +00:00
2008-03-10 15:00:22 +00:00
int ymax;
int xmax;
2008-03-05 22:39:33 +00:00
2008-03-10 15:00:22 +00:00
int ymin;
int xmin;
if( Type() == PCB_VIA_T )
2008-03-10 15:00:22 +00:00
{
2008-03-10 15:02:27 +00:00
// Because vias are sometimes drawn larger than their m_Width would
// provide, erasing them using a dirty rect must also compensate for this
// possibility (that the via is larger on screen than its m_Width would provide).
// Because it is cheap to return a larger BoundingBox, do it so that
2008-03-10 15:00:22 +00:00
// the via gets erased properly. Do not divide width by 2 for this reason.
radius = m_Width;
ymax = m_Start.y;
xmax = m_Start.x;
ymin = m_Start.y;
xmin = m_Start.x;
}
else
{
radius = ( m_Width + 1 ) / 2;
2008-03-10 15:00:22 +00:00
ymax = std::max( m_Start.y, m_End.y );
xmax = std::max( m_Start.x, m_End.x );
2008-03-10 15:00:22 +00:00
ymin = std::min( m_Start.y, m_End.y );
xmin = std::min( m_Start.x, m_End.x );
2008-03-10 15:00:22 +00:00
}
2008-03-05 22:39:33 +00:00
if( ShowClearance( this ) )
{
// + 1 is for the clearance line itself.
2009-09-10 15:22:26 +00:00
radius += GetClearance() + 1;
}
2008-03-05 22:39:33 +00:00
ymax += radius;
xmax += radius;
ymin -= radius;
xmin -= radius;
2008-03-10 13:33:12 +00:00
// return a rectangle which is [pos,dim) in nature. therefore the +1
EDA_RECT ret( wxPoint( xmin, ymin ), wxSize( xmax - xmin + 1, ymax - ymin + 1 ) );
return ret;
2008-03-05 22:39:33 +00:00
}
2011-12-14 04:29:25 +00:00
void TRACK::Rotate( const wxPoint& aRotCentre, double aAngle )
2009-08-01 19:26:05 +00:00
{
RotatePoint( &m_Start, aRotCentre, aAngle );
RotatePoint( &m_End, aRotCentre, aAngle );
}
void TRACK::Flip( const wxPoint& aCentre )
2009-08-01 19:26:05 +00:00
{
m_Start.y = aCentre.y - (m_Start.y - aCentre.y);
m_End.y = aCentre.y - (m_End.y - aCentre.y);
if( Type() != PCB_VIA_T )
SetLayer( FlipLayer( GetLayer() ) );
2009-08-01 19:26:05 +00:00
}
2008-03-05 22:39:33 +00:00
// see class_track.h
2007-10-19 06:31:17 +00:00
SEARCH_RESULT TRACK::Visit( INSPECTOR* inspector, const void* testData,
const KICAD_T scanTypes[] )
2007-08-30 22:20:52 +00:00
{
2007-10-19 06:31:17 +00:00
KICAD_T stype = *scanTypes;
2007-08-08 20:51:08 +00:00
2007-08-30 22:20:52 +00:00
// If caller wants to inspect my type
2007-09-01 12:00:30 +00:00
if( stype == Type() )
2007-08-30 22:20:52 +00:00
{
if( SEARCH_QUIT == inspector->Inspect( this, testData ) )
return SEARCH_QUIT;
}
2007-10-15 07:50:59 +00:00
return SEARCH_CONTINUE;
2007-08-30 22:20:52 +00:00
}
bool SEGVIA::IsOnLayer( LAYER_NUM layer_number ) const
{
LAYER_NUM bottom_layer, top_layer;
2007-10-15 07:50:59 +00:00
* KIWAY Milestone A): Make major modules into DLL/DSOs. ! The initial testing of this commit should be done using a Debug build so that all the wxASSERT()s are enabled. Also, be sure and keep enabled the USE_KIWAY_DLLs option. The tree won't likely build without it. Turning it off is senseless anyways. If you want stable code, go back to a prior version, the one tagged with "stable". * Relocate all functionality out of the wxApp derivative into more finely targeted purposes: a) DLL/DSO specific b) PROJECT specific c) EXE or process specific d) configuration file specific data e) configuration file manipulations functions. All of this functionality was blended into an extremely large wxApp derivative and that was incompatible with the desire to support multiple concurrently loaded DLL/DSO's ("KIFACE")s and multiple concurrently open projects. An amazing amount of organization come from simply sorting each bit of functionality into the proper box. * Switch to wxConfigBase from wxConfig everywhere except instantiation. * Add classes KIWAY, KIFACE, KIFACE_I, SEARCH_STACK, PGM_BASE, PGM_KICAD, PGM_SINGLE_TOP, * Remove "Return" prefix on many function names. * Remove obvious comments from CMakeLists.txt files, and from else() and endif()s. * Fix building boost for use in a DSO on linux. * Remove some of the assumptions in the CMakeLists.txt files that windows had to be the host platform when building windows binaries. * Reduce the number of wxStrings being constructed at program load time via static construction. * Pass wxConfigBase* to all SaveSettings() and LoadSettings() functions so that these functions are useful even when the wxConfigBase comes from another source, as is the case in the KICAD_MANAGER_FRAME. * Move the setting of the KIPRJMOD environment variable into class PROJECT, so that it can be moved into a project variable soon, and out of FP_LIB_TABLE. * Add the KIWAY_PLAYER which is associated with a particular PROJECT, and all its child wxFrames and wxDialogs now have a Kiway() member function which returns a KIWAY& that that window tree branch is in support of. This is like wxWindows DNA in that child windows get this member with proper value at time of construction. * Anticipate some of the needs for milestones B) and C) and make code adjustments now in an effort to reduce work in those milestones. * No testing has been done for python scripting, since milestone C) has that being largely reworked and re-thought-out.
2014-03-20 00:42:08 +00:00
LayerPair( &top_layer, &bottom_layer );
2007-10-15 07:50:59 +00:00
if( bottom_layer <= layer_number && layer_number <= top_layer )
2007-08-30 22:20:52 +00:00
return true;
2007-08-08 20:51:08 +00:00
else
2007-08-30 22:20:52 +00:00
return false;
}
LAYER_MSK TRACK::GetLayerMask() const
{
if( Type() == PCB_VIA_T )
2007-08-08 20:51:08 +00:00
{
2011-12-14 04:29:25 +00:00
int via_type = GetShape();
2007-10-15 07:50:59 +00:00
if( via_type == VIA_THROUGH )
2007-08-08 20:51:08 +00:00
return ALL_CU_LAYERS;
// VIA_BLIND_BURIED or VIA_MICRVIA:
2007-10-15 07:50:59 +00:00
LAYER_NUM bottom_layer, top_layer;
2007-10-01 13:51:07 +00:00
* KIWAY Milestone A): Make major modules into DLL/DSOs. ! The initial testing of this commit should be done using a Debug build so that all the wxASSERT()s are enabled. Also, be sure and keep enabled the USE_KIWAY_DLLs option. The tree won't likely build without it. Turning it off is senseless anyways. If you want stable code, go back to a prior version, the one tagged with "stable". * Relocate all functionality out of the wxApp derivative into more finely targeted purposes: a) DLL/DSO specific b) PROJECT specific c) EXE or process specific d) configuration file specific data e) configuration file manipulations functions. All of this functionality was blended into an extremely large wxApp derivative and that was incompatible with the desire to support multiple concurrently loaded DLL/DSO's ("KIFACE")s and multiple concurrently open projects. An amazing amount of organization come from simply sorting each bit of functionality into the proper box. * Switch to wxConfigBase from wxConfig everywhere except instantiation. * Add classes KIWAY, KIFACE, KIFACE_I, SEARCH_STACK, PGM_BASE, PGM_KICAD, PGM_SINGLE_TOP, * Remove "Return" prefix on many function names. * Remove obvious comments from CMakeLists.txt files, and from else() and endif()s. * Fix building boost for use in a DSO on linux. * Remove some of the assumptions in the CMakeLists.txt files that windows had to be the host platform when building windows binaries. * Reduce the number of wxStrings being constructed at program load time via static construction. * Pass wxConfigBase* to all SaveSettings() and LoadSettings() functions so that these functions are useful even when the wxConfigBase comes from another source, as is the case in the KICAD_MANAGER_FRAME. * Move the setting of the KIPRJMOD environment variable into class PROJECT, so that it can be moved into a project variable soon, and out of FP_LIB_TABLE. * Add the KIWAY_PLAYER which is associated with a particular PROJECT, and all its child wxFrames and wxDialogs now have a Kiway() member function which returns a KIWAY& that that window tree branch is in support of. This is like wxWindows DNA in that child windows get this member with proper value at time of construction. * Anticipate some of the needs for milestones B) and C) and make code adjustments now in an effort to reduce work in those milestones. * No testing has been done for python scripting, since milestone C) has that being largely reworked and re-thought-out.
2014-03-20 00:42:08 +00:00
// LayerPair() knows how layers are stored
( (SEGVIA*) this )->LayerPair( &top_layer, &bottom_layer );
2007-10-15 07:50:59 +00:00
LAYER_MSK layermask = NO_LAYERS;
2007-08-08 20:51:08 +00:00
while( bottom_layer <= top_layer )
{
layermask |= ::GetLayerMask( bottom_layer );
++bottom_layer;
2007-08-08 20:51:08 +00:00
}
return layermask;
}
else
{
return ::GetLayerMask( m_Layer );
}
}
void SEGVIA::SetLayerPair( LAYER_NUM top_layer, LAYER_NUM bottom_layer )
{
2011-12-14 04:29:25 +00:00
if( GetShape() == VIA_THROUGH )
2007-08-08 20:51:08 +00:00
{
top_layer = LAYER_N_FRONT;
bottom_layer = LAYER_N_BACK;
2007-08-08 20:51:08 +00:00
}
2007-08-08 20:51:08 +00:00
if( bottom_layer > top_layer )
EXCHG( bottom_layer, top_layer );
// XXX EVIL usage of LAYER
2007-08-08 20:51:08 +00:00
m_Layer = (top_layer & 15) + ( (bottom_layer & 15) << 4 );
}
2007-08-08 20:51:08 +00:00
* KIWAY Milestone A): Make major modules into DLL/DSOs. ! The initial testing of this commit should be done using a Debug build so that all the wxASSERT()s are enabled. Also, be sure and keep enabled the USE_KIWAY_DLLs option. The tree won't likely build without it. Turning it off is senseless anyways. If you want stable code, go back to a prior version, the one tagged with "stable". * Relocate all functionality out of the wxApp derivative into more finely targeted purposes: a) DLL/DSO specific b) PROJECT specific c) EXE or process specific d) configuration file specific data e) configuration file manipulations functions. All of this functionality was blended into an extremely large wxApp derivative and that was incompatible with the desire to support multiple concurrently loaded DLL/DSO's ("KIFACE")s and multiple concurrently open projects. An amazing amount of organization come from simply sorting each bit of functionality into the proper box. * Switch to wxConfigBase from wxConfig everywhere except instantiation. * Add classes KIWAY, KIFACE, KIFACE_I, SEARCH_STACK, PGM_BASE, PGM_KICAD, PGM_SINGLE_TOP, * Remove "Return" prefix on many function names. * Remove obvious comments from CMakeLists.txt files, and from else() and endif()s. * Fix building boost for use in a DSO on linux. * Remove some of the assumptions in the CMakeLists.txt files that windows had to be the host platform when building windows binaries. * Reduce the number of wxStrings being constructed at program load time via static construction. * Pass wxConfigBase* to all SaveSettings() and LoadSettings() functions so that these functions are useful even when the wxConfigBase comes from another source, as is the case in the KICAD_MANAGER_FRAME. * Move the setting of the KIPRJMOD environment variable into class PROJECT, so that it can be moved into a project variable soon, and out of FP_LIB_TABLE. * Add the KIWAY_PLAYER which is associated with a particular PROJECT, and all its child wxFrames and wxDialogs now have a Kiway() member function which returns a KIWAY& that that window tree branch is in support of. This is like wxWindows DNA in that child windows get this member with proper value at time of construction. * Anticipate some of the needs for milestones B) and C) and make code adjustments now in an effort to reduce work in those milestones. * No testing has been done for python scripting, since milestone C) has that being largely reworked and re-thought-out.
2014-03-20 00:42:08 +00:00
void SEGVIA::LayerPair( LAYER_NUM* top_layer, LAYER_NUM* bottom_layer ) const
{
LAYER_NUM b_layer = LAYER_N_BACK;
LAYER_NUM t_layer = LAYER_N_FRONT;
2007-08-08 20:51:08 +00:00
2011-12-14 04:29:25 +00:00
if( GetShape() != VIA_THROUGH )
2009-05-21 12:45:21 +00:00
{
// XXX EVIL usage of LAYER
2009-05-21 12:45:21 +00:00
b_layer = (m_Layer >> 4) & 15;
t_layer = m_Layer & 15;
2009-05-21 12:45:21 +00:00
if( b_layer > t_layer )
EXCHG( b_layer, t_layer );
}
2007-10-19 06:31:17 +00:00
2007-08-08 20:51:08 +00:00
if( top_layer )
*top_layer = t_layer;
2007-10-19 06:31:17 +00:00
2007-08-08 20:51:08 +00:00
if( bottom_layer )
*bottom_layer = b_layer;
}
2010-12-29 17:47:32 +00:00
TRACK* TRACK::GetBestInsertPoint( BOARD* aPcb )
{
TRACK* track;
2007-08-08 20:51:08 +00:00
if( Type() == PCB_ZONE_T )
2010-12-29 17:47:32 +00:00
track = aPcb->m_Zone;
2007-08-08 20:51:08 +00:00
else
2010-12-29 17:47:32 +00:00
track = aPcb->m_Track;
2007-08-08 20:51:08 +00:00
for( ; track; track = track->Next() )
2007-08-08 20:51:08 +00:00
{
if( GetNetCode() <= track->GetNetCode() )
return track;
2007-08-08 20:51:08 +00:00
}
return NULL;
}
2007-08-08 20:51:08 +00:00
TRACK* TRACK::GetStartNetCode( int NetCode )
{
2007-08-08 20:51:08 +00:00
TRACK* Track = this;
int ii = 0;
if( NetCode == -1 )
NetCode = GetNetCode();
2007-08-08 20:51:08 +00:00
while( Track != NULL )
{
if( Track->GetNetCode() > NetCode )
2007-08-08 20:51:08 +00:00
break;
2007-10-19 06:31:17 +00:00
if( Track->GetNetCode() == NetCode )
2007-08-08 20:51:08 +00:00
{
2007-10-19 06:31:17 +00:00
ii++;
2007-10-13 06:18:44 +00:00
break;
2007-08-08 20:51:08 +00:00
}
2007-10-19 06:31:17 +00:00
2007-08-08 20:51:08 +00:00
Track = (TRACK*) Track->Pnext;
}
if( ii )
return Track;
else
return NULL;
}
2007-08-08 20:51:08 +00:00
TRACK* TRACK::GetEndNetCode( int NetCode )
{
2007-08-08 20:51:08 +00:00
TRACK* NextS, * Track = this;
int ii = 0;
if( Track == NULL )
return NULL;
if( NetCode == -1 )
NetCode = GetNetCode();
2007-08-08 20:51:08 +00:00
while( Track != NULL )
{
NextS = (TRACK*) Track->Pnext;
if( Track->GetNetCode() == NetCode )
2007-08-08 20:51:08 +00:00
ii++;
2007-10-19 06:31:17 +00:00
2007-08-08 20:51:08 +00:00
if( NextS == NULL )
break;
2007-10-19 06:31:17 +00:00
if( NextS->GetNetCode() > NetCode )
2007-08-08 20:51:08 +00:00
break;
2007-10-19 06:31:17 +00:00
2007-08-08 20:51:08 +00:00
Track = NextS;
}
if( ii )
return Track;
else
return NULL;
}
void TRACK::Draw( EDA_DRAW_PANEL* panel, wxDC* aDC, GR_DRAWMODE aDrawMode,
const wxPoint& aOffset )
{
int l_trace;
int radius;
LAYER_NUM curr_layer = ( (PCB_SCREEN*) panel->GetScreen() )->m_Active_Layer;
2007-08-08 20:51:08 +00:00
if( Type() == PCB_ZONE_T && DisplayOpt.DisplayZonesMode != 0 )
2007-08-08 20:51:08 +00:00
return;
BOARD * brd = GetBoard( );
EDA_COLOR_T color = brd->GetLayerColor(m_Layer);
2007-08-08 20:51:08 +00:00
if( brd->IsLayerVisible( m_Layer ) == false && !( aDrawMode & GR_HIGHLIGHT ) )
return;
2007-08-08 20:51:08 +00:00
#ifdef USE_WX_OVERLAY
// If dragged not draw in OnPaint otherwise remains impressed in wxOverlay
if( (m_Flags && IS_DRAGGED) && aDC->IsKindOf(wxCLASSINFO(wxPaintDC)))
return;
#endif
if( ( aDrawMode & GR_ALLOW_HIGHCONTRAST ) && DisplayOpt.ContrastModeDisplay )
{
if( !IsOnLayer( curr_layer ) )
ColorTurnToDarkDarkGray( &color );
}
2007-08-08 20:51:08 +00:00
if( aDrawMode & GR_HIGHLIGHT )
ColorChangeHighlightFlag( &color, !(aDrawMode & GR_AND) );
2008-04-02 14:16:14 +00:00
ColorApplyHighlightFlag( &color );
2007-08-08 20:51:08 +00:00
SetAlpha( &color, 150 );
GRSetDrawMode( aDC, aDrawMode );
2008-04-02 14:16:14 +00:00
2007-08-08 20:51:08 +00:00
l_trace = m_Width >> 1;
2007-08-08 20:51:08 +00:00
if( m_Shape == S_CIRCLE )
{
radius = KiROUND( GetLineLength( m_Start, m_End ) );
if( aDC->LogicalToDeviceXRel( l_trace ) <= MIN_DRAW_WIDTH )
2007-08-08 20:51:08 +00:00
{
GRCircle( panel->GetClipBox(), aDC, m_Start.x + aOffset.x,
m_Start.y + aOffset.y, radius, color );
2007-08-08 20:51:08 +00:00
}
else
{
if( aDC->LogicalToDeviceXRel( l_trace ) <= MIN_DRAW_WIDTH ) // Line mode if too small
2007-08-08 20:51:08 +00:00
{
GRCircle( panel->GetClipBox(), aDC, m_Start.x + aOffset.x,
m_Start.y + aOffset.y, radius, color );
2007-08-08 20:51:08 +00:00
}
else if( ( !DisplayOpt.DisplayPcbTrackFill) || GetState( FORCE_SKETCH ) )
{
GRCircle( panel->GetClipBox(), aDC, m_Start.x + aOffset.x,
m_Start.y + aOffset.y, radius - l_trace, color );
GRCircle( panel->GetClipBox(), aDC, m_Start.x + aOffset.x,
m_Start.y + aOffset.y, radius + l_trace, color );
2007-08-08 20:51:08 +00:00
}
else
{
GRCircle( panel->GetClipBox(), aDC, m_Start.x + aOffset.x,
m_Start.y + aOffset.y, radius, m_Width, color );
2007-08-08 20:51:08 +00:00
}
}
2007-08-08 20:51:08 +00:00
return;
}
if( aDC->LogicalToDeviceXRel( l_trace ) <= MIN_DRAW_WIDTH )
2007-08-08 20:51:08 +00:00
{
GRLine( panel->GetClipBox(), aDC, m_Start + aOffset, m_End + aOffset, 0, color );
2007-08-08 20:51:08 +00:00
return;
}
if( !DisplayOpt.DisplayPcbTrackFill || GetState( FORCE_SKETCH ) )
2007-08-08 20:51:08 +00:00
{
GRCSegm( panel->GetClipBox(), aDC, m_Start + aOffset, m_End + aOffset, m_Width, color );
2007-08-08 20:51:08 +00:00
}
else
{
GRFillCSegm( panel->GetClipBox(), aDC, m_Start.x + aOffset.x,
m_Start.y + aOffset.y,
m_End.x + aOffset.x, m_End.y + aOffset.y, m_Width, color );
2007-08-08 20:51:08 +00:00
}
if( panel->GetScreen()->m_IsPrinting )
return;
// Show clearance for tracks, not for zone segments
if( ShowClearance( this ) )
2007-08-08 20:51:08 +00:00
{
GRCSegm( panel->GetClipBox(), aDC, m_Start + aOffset, m_End + aOffset,
2009-09-10 15:22:26 +00:00
m_Width + (GetClearance() * 2), color );
2007-08-08 20:51:08 +00:00
}
/* Display the short netname for tracks, not for zone segments.
* we must filter tracks, to avoid a lot of texts.
* - only tracks with a length > 10 * thickness are eligible
* and, of course, if we are not printing the board
*/
if( Type() == PCB_ZONE_T )
return;
2009-05-21 12:45:21 +00:00
if( DisplayOpt.DisplayNetNamesMode == 0 || DisplayOpt.DisplayNetNamesMode == 1 )
2009-03-26 19:27:50 +00:00
return;
#define THRESHOLD 10
int len = KiROUND( GetLineLength( m_Start, m_End ) );
if( len < THRESHOLD * m_Width )
return;
// no room to display a text inside track
if( aDC->LogicalToDeviceXRel( m_Width ) < MIN_TEXT_SIZE )
return;
if( GetNetCode() == NETINFO_LIST::UNCONNECTED )
return;
NETINFO_ITEM* net = GetNet();
if( net == NULL )
return;
int textlen = net->GetShortNetname().Len();
if( textlen > 0 )
{
// calculate a good size for the text
int tsize = std::min( m_Width, len / textlen );
int dx = m_End.x - m_Start.x ;
int dy = m_End.y - m_Start.y ;
2009-05-21 12:45:21 +00:00
wxPoint tpos = m_Start + m_End;
tpos.x /= 2;
tpos.y /= 2;
// Calculate angle: if the track segment is vertical, angle = 90 degrees
// If horizontal 0 degrees, otherwise compute it
double angle; // angle is in 0.1 degree
if( dy == 0 ) // Horizontal segment
{
angle = 0;
}
else
{
if( dx == 0 ) // Vertical segment
{
angle = 900;
}
else
{
/* atan2 is *not* the solution here, since it can give upside
down text. We want to work only in the first and fourth quadrant */
angle = RAD2DECIDEG( -atan( double( dy ) / double( dx ) ) );
2009-09-10 15:22:26 +00:00
}
}
if( ( aDC->LogicalToDeviceXRel( tsize ) >= MIN_TEXT_SIZE )
&& ( !(!IsOnLayer( curr_layer )&& DisplayOpt.ContrastModeDisplay) ) )
{
if( (aDrawMode & GR_XOR) == 0 )
GRSetDrawMode( aDC, GR_COPY );
tsize = (tsize * 7) / 10; // small reduction to give a better look
EDA_RECT* clipbox = panel? panel->GetClipBox() : NULL;
DrawGraphicHaloText( clipbox, aDC, tpos,
color, BLACK, WHITE, net->GetShortNetname(), angle,
wxSize( tsize, tsize ),
GR_TEXT_HJUSTIFY_CENTER, GR_TEXT_VJUSTIFY_CENTER,
tsize / 7,
false, false );
}
}
}
2013-07-08 07:57:23 +00:00
void TRACK::ViewGetLayers( int aLayers[], int& aCount ) const
{
// Show the track and its netname on different layers
aLayers[0] = GetLayer();
aLayers[1] = GetNetnameLayer( aLayers[0] );
2013-07-08 07:57:23 +00:00
aCount = 2;
}
unsigned int TRACK::ViewGetLOD( int aLayer ) const
{
// Netnames will be shown only if zoom is appropriate
if( IsNetnameLayer( aLayer ) )
2013-07-08 07:57:23 +00:00
{
return ( 20000000 / ( m_Width + 1 ) );
2013-07-08 07:57:23 +00:00
}
// Other layers are shown without any conditions
return 0;
}
void SEGVIA::Draw( EDA_DRAW_PANEL* panel, wxDC* aDC, GR_DRAWMODE aDrawMode,
const wxPoint& aOffset )
{
int radius;
LAYER_NUM curr_layer = ( (PCB_SCREEN*) panel->GetScreen() )->m_Active_Layer;
2009-10-27 10:55:46 +00:00
int fillvia = 0;
PCB_BASE_FRAME* frame = (PCB_BASE_FRAME*) panel->GetParent();
PCB_SCREEN* screen = frame->GetScreen();
2009-09-29 04:44:35 +00:00
if( frame->m_DisplayViaFill == FILLED )
fillvia = 1;
GRSetDrawMode( aDC, aDrawMode );
BOARD * brd = GetBoard( );
EDA_COLOR_T color = brd->GetVisibleElementColor(VIAS_VISIBLE + m_Shape);
if( brd->IsElementVisible( PCB_VISIBLE(VIAS_VISIBLE + m_Shape) ) == false
&& ( color & HIGHLIGHT_FLAG ) != HIGHLIGHT_FLAG )
return;
if( DisplayOpt.ContrastModeDisplay )
{
if( !IsOnLayer( curr_layer ) )
ColorTurnToDarkDarkGray( &color );
}
if( aDrawMode & GR_HIGHLIGHT )
ColorChangeHighlightFlag( &color, !(aDrawMode & GR_AND) );
ColorApplyHighlightFlag( &color );
SetAlpha( &color, 150 );
radius = m_Width >> 1;
// for small via size on screen (radius < 4 pixels) draw a simplified shape
int radius_in_pixels = aDC->LogicalToDeviceXRel( radius );
2009-10-27 10:55:46 +00:00
bool fast_draw = false;
// Vias are drawn as a filled circle or a double circle. The hole will be drawn later
int drill_radius = GetDrillValue() / 2;
int inner_radius = radius - aDC->DeviceToLogicalXRel( 2 );
if( radius_in_pixels < MIN_VIA_DRAW_SIZE )
{
2009-10-27 10:55:46 +00:00
fast_draw = true;
fillvia = false;
}
2009-09-29 04:44:35 +00:00
if( fillvia )
{
GRFilledCircle( panel->GetClipBox(), aDC, m_Start + aOffset, radius, color );
}
2009-09-29 04:44:35 +00:00
else
2009-10-27 10:55:46 +00:00
{
GRCircle( panel->GetClipBox(), aDC, m_Start + aOffset, radius, 0, color );
2009-10-27 10:55:46 +00:00
if ( fast_draw )
return;
GRCircle( panel->GetClipBox(), aDC, m_Start + aOffset, inner_radius, 0, color );
2009-10-27 10:55:46 +00:00
}
// Draw the via hole if the display option allows it
if( DisplayOpt.m_DisplayViaMode != VIA_HOLE_NOT_SHOW )
{
// Display all drill holes requested or Display non default holes requested
if( (DisplayOpt.m_DisplayViaMode == ALL_VIA_HOLE_SHOW)
|| ( (drill_radius > 0 ) && !IsDrillDefault() ) )
{
2009-10-27 10:55:46 +00:00
if( fillvia )
{
2009-10-27 10:55:46 +00:00
bool blackpenstate = false;
2009-10-27 10:55:46 +00:00
if( screen->m_IsPrinting )
2009-09-29 04:44:35 +00:00
{
2009-10-27 10:55:46 +00:00
blackpenstate = GetGRForceBlackPenState();
GRForceBlackPen( false );
color = g_DrawBgColor;
2009-09-29 04:44:35 +00:00
}
else
{
2009-10-27 10:55:46 +00:00
color = BLACK; // or DARKGRAY;
}
2009-10-27 10:55:46 +00:00
if( (aDrawMode & GR_XOR) == 0)
GRSetDrawMode( aDC, GR_COPY );
2009-10-27 10:55:46 +00:00
if( aDC->LogicalToDeviceXRel( drill_radius ) > MIN_DRAW_WIDTH ) // Draw hole if large enough.
GRFilledCircle( panel->GetClipBox(), aDC, m_Start.x + aOffset.x,
m_Start.y + aOffset.y, drill_radius, 0, color, color );
2009-10-27 10:55:46 +00:00
if( screen->m_IsPrinting )
GRForceBlackPen( blackpenstate );
}
else
{
if( drill_radius < inner_radius ) // We can show the via hole
GRCircle( panel->GetClipBox(), aDC, m_Start + aOffset, drill_radius, 0, color );
}
}
}
if( ShowClearance( this ) )
{
GRCircle( panel->GetClipBox(), aDC, m_Start + aOffset, radius + GetClearance(), 0, color );
}
// for Micro Vias, draw a partial cross : X on component layer, or + on copper layer
// (so we can see 2 superimposed microvias ):
2011-12-14 04:29:25 +00:00
if( GetShape() == VIA_MICROVIA )
{
int ax, ay, bx, by;
if( IsOnLayer( LAYER_N_BACK ) )
{
ax = radius; ay = 0;
bx = drill_radius; by = 0;
}
else
{
ax = ay = (radius * 707) / 1000;
bx = by = (drill_radius * 707) / 1000;
}
/* lines | or \ */
GRLine( panel->GetClipBox(), aDC, m_Start.x + aOffset.x - ax,
m_Start.y + aOffset.y - ay,
m_Start.x + aOffset.x - bx,
m_Start.y + aOffset.y - by, 0, color );
GRLine( panel->GetClipBox(), aDC, m_Start.x + aOffset.x + bx,
m_Start.y + aOffset.y + by,
m_Start.x + aOffset.x + ax,
m_Start.y + aOffset.y + ay, 0, color );
// lines - or /
GRLine( panel->GetClipBox(), aDC, m_Start.x + aOffset.x + ay,
m_Start.y + aOffset.y - ax,
m_Start.x + aOffset.x + by,
m_Start.y + aOffset.y - bx, 0, color );
GRLine( panel->GetClipBox(), aDC, m_Start.x + aOffset.x - by,
m_Start.y + aOffset.y + bx,
m_Start.x + aOffset.x - ay,
m_Start.y + aOffset.y + ax, 0, color );
}
// for Buried Vias, draw a partial line : orient depending on layer pair
// (so we can see superimposed buried vias ):
2011-12-14 04:29:25 +00:00
if( GetShape() == VIA_BLIND_BURIED )
{
int ax = 0, ay = radius, bx = 0, by = drill_radius;
LAYER_NUM layer_top, layer_bottom;
* KIWAY Milestone A): Make major modules into DLL/DSOs. ! The initial testing of this commit should be done using a Debug build so that all the wxASSERT()s are enabled. Also, be sure and keep enabled the USE_KIWAY_DLLs option. The tree won't likely build without it. Turning it off is senseless anyways. If you want stable code, go back to a prior version, the one tagged with "stable". * Relocate all functionality out of the wxApp derivative into more finely targeted purposes: a) DLL/DSO specific b) PROJECT specific c) EXE or process specific d) configuration file specific data e) configuration file manipulations functions. All of this functionality was blended into an extremely large wxApp derivative and that was incompatible with the desire to support multiple concurrently loaded DLL/DSO's ("KIFACE")s and multiple concurrently open projects. An amazing amount of organization come from simply sorting each bit of functionality into the proper box. * Switch to wxConfigBase from wxConfig everywhere except instantiation. * Add classes KIWAY, KIFACE, KIFACE_I, SEARCH_STACK, PGM_BASE, PGM_KICAD, PGM_SINGLE_TOP, * Remove "Return" prefix on many function names. * Remove obvious comments from CMakeLists.txt files, and from else() and endif()s. * Fix building boost for use in a DSO on linux. * Remove some of the assumptions in the CMakeLists.txt files that windows had to be the host platform when building windows binaries. * Reduce the number of wxStrings being constructed at program load time via static construction. * Pass wxConfigBase* to all SaveSettings() and LoadSettings() functions so that these functions are useful even when the wxConfigBase comes from another source, as is the case in the KICAD_MANAGER_FRAME. * Move the setting of the KIPRJMOD environment variable into class PROJECT, so that it can be moved into a project variable soon, and out of FP_LIB_TABLE. * Add the KIWAY_PLAYER which is associated with a particular PROJECT, and all its child wxFrames and wxDialogs now have a Kiway() member function which returns a KIWAY& that that window tree branch is in support of. This is like wxWindows DNA in that child windows get this member with proper value at time of construction. * Anticipate some of the needs for milestones B) and C) and make code adjustments now in an effort to reduce work in those milestones. * No testing has been done for python scripting, since milestone C) has that being largely reworked and re-thought-out.
2014-03-20 00:42:08 +00:00
( (SEGVIA*) this )->LayerPair( &layer_top, &layer_bottom );
// lines for the top layer
RotatePoint( &ax, &ay, layer_top * 3600.0 / brd->GetCopperLayerCount( ) );
RotatePoint( &bx, &by, layer_top * 3600.0 / brd->GetCopperLayerCount( ) );
GRLine( panel->GetClipBox(), aDC, m_Start.x + aOffset.x - ax,
m_Start.y + aOffset.y - ay,
m_Start.x + aOffset.x - bx,
m_Start.y + aOffset.y - by, 0, color );
// lines for the bottom layer
ax = 0; ay = radius; bx = 0; by = drill_radius;
RotatePoint( &ax, &ay, layer_bottom * 3600.0 / brd->GetCopperLayerCount( ) );
RotatePoint( &bx, &by, layer_bottom * 3600.0 / brd->GetCopperLayerCount( ) );
GRLine( panel->GetClipBox(), aDC, m_Start.x + aOffset.x - ax,
m_Start.y + aOffset.y - ay,
m_Start.x + aOffset.x - bx,
m_Start.y + aOffset.y - by, 0, color );
}
// Display the short netname:
if( GetNetCode() == NETINFO_LIST::UNCONNECTED )
return;
2009-05-21 12:45:21 +00:00
if( DisplayOpt.DisplayNetNamesMode == 0 || DisplayOpt.DisplayNetNamesMode == 1 )
2009-03-26 19:27:50 +00:00
return;
NETINFO_ITEM* net = GetNet();
if( net == NULL )
return;
int len = net->GetShortNetname().Len();
if( len > 0 )
{
2008-12-15 10:24:19 +00:00
// calculate a good size for the text
int tsize = m_Width / len;
if( aDC->LogicalToDeviceXRel( tsize ) >= MIN_TEXT_SIZE )
2008-12-15 10:24:19 +00:00
{
tsize = (tsize * 7) / 10; // small reduction to give a better look, inside via
if( (aDrawMode & GR_XOR) == 0 )
GRSetDrawMode( aDC, GR_COPY );
EDA_RECT* clipbox = panel? panel->GetClipBox() : NULL;
DrawGraphicHaloText( clipbox, aDC, m_Start,
color, WHITE, BLACK, net->GetShortNetname(), 0,
wxSize( tsize, tsize ),
GR_TEXT_HJUSTIFY_CENTER, GR_TEXT_VJUSTIFY_CENTER,
tsize / 7, false, false );
2008-12-15 10:24:19 +00:00
}
}
}
Introduction of Graphics Abstraction Layer based rendering for pcbnew. New classes: - VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.) - VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes). - EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL). - GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries. - WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc. - PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods. - STROKE_FONT - Implements stroke font drawing using GAL methods. Most important changes to Kicad original code: * EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects. * EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime. * There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew) * Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom. * Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime. * Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods. * Removed tools/class_painter.h, as now it is extended and included in source code. Build changes: * GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL. * When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required. * GAL-related code is compiled into a static library (common/libgal). * Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS). More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
2013-04-02 06:54:03 +00:00
void SEGVIA::ViewGetLayers( int aLayers[], int& aCount ) const
{
// Just show it on common via & via holes layers
aLayers[0] = ITEM_GAL_LAYER( VIA_THROUGH_VISIBLE );
2013-07-08 09:30:50 +00:00
aLayers[1] = ITEM_GAL_LAYER( VIAS_HOLES_VISIBLE );
Introduction of Graphics Abstraction Layer based rendering for pcbnew. New classes: - VIEW - represents view that is seen by user, takes care of layer ordering & visibility and how it is displayed (which location, how much zoomed, etc.) - VIEW_ITEM - Base class for every item that can be displayed on VIEW (the biggest change is that now it may be necessary to override ViewBBox & ViewGetLayers method for derived classes). - EDA_DRAW_PANEL_GAL - Inherits after EDA_DRAW_PANEL, displays VIEW output, right now it is not editable (in opposite to usual EDA_DRAW_PANEL). - GAL/OPENGL_GAL/CAIRO_GAL - Base Graphics Abstraction Layer class + two different flavours (Cairo is not fully supported yet), that offers methods to draw primitives using different libraries. - WX_VIEW_CONTROLS - Controller for VIEW, handles user events, allows zooming, panning, etc. - PAINTER/PCB_PAINTER - Classes that uses GAL interface to draw items (as you may have already guessed - PCB_PAINTER is a class for drawing PCB specific object, PAINTER is an abstract class). Its methods are invoked by VIEW, when an item has to be drawn. To display a new type of item - you need to implement draw(ITEM_TYPE*) method that draws it using GAL methods. - STROKE_FONT - Implements stroke font drawing using GAL methods. Most important changes to Kicad original code: * EDA_ITEM now inherits from VIEW_ITEM, which is a base class for all drawable objects. * EDA_DRAW_FRAME contains both usual EDA_DRAW_PANEL and new EDA_DRAW_PANEL_GAL, that can be switched anytime. * There are some new layers for displaying multilayer pads, vias & pads holes (these are not shown yet on the right sidebar in pcbnew) * Display order of layers is different than in previous versions (if you are curious - you may check m_galLayerOrder@pcbnew/basepcbframe.cpp). Preserving usual order would result in not very natural display, such as showing silkscreen texts on the bottom. * Introduced new hotkey (Alt+F12) and new menu option (View->Switch canvas) for switching canvas during runtime. * Some of classes (mostly derived from BOARD_ITEM) now includes ViewBBox & ViewGetLayers methods. * Removed tools/class_painter.h, as now it is extended and included in source code. Build changes: * GAL-based rendering option is turned on by a new compilation CMake option KICAD_GAL. * When compiling with CMake option KICAD_GAL=ON, GLEW and Cairo libraries are required. * GAL-related code is compiled into a static library (common/libgal). * Build with KICAD_GAL=OFF should not need any new libraries and should come out as a standard version of Kicad Currently most of items in pcbnew can be displayed using OpenGL (to be done are DIMENSIONS and MARKERS). More details about GAL can be found in: http://www.ohwr.org/attachments/1884/view-spec.pdf
2013-04-02 06:54:03 +00:00
aCount = 2;
}
// see class_track.h
void TRACK::GetMsgPanelInfo( std::vector< MSG_PANEL_ITEM >& aList )
{
wxString msg;
BOARD* board = GetBoard();
// Display basic infos
GetMsgPanelInfoBase( aList );
// Display full track length (in Pcbnew)
if( board )
{
double trackLen = 0;
double lenPadToDie = 0;
board->MarkTrace( this, NULL, &trackLen, &lenPadToDie, false );
msg = ::CoordinateToString( trackLen );
aList.push_back( MSG_PANEL_ITEM( _( "Track Len" ), msg, DARKCYAN ) );
if( lenPadToDie != 0 )
{
msg = ::LengthDoubleToString( trackLen + lenPadToDie );
aList.push_back( MSG_PANEL_ITEM( _( "Full Len" ), msg, DARKCYAN ) );
msg = ::LengthDoubleToString( lenPadToDie );
aList.push_back( MSG_PANEL_ITEM( _( "In Package" ), msg, DARKCYAN ) );
}
}
NETCLASS* netclass = GetNetClass();
if( netclass )
{
aList.push_back( MSG_PANEL_ITEM( _( "NC Name" ), netclass->GetName(), DARKMAGENTA ) );
aList.push_back( MSG_PANEL_ITEM( _( "NC Clearance" ),
::CoordinateToString( netclass->GetClearance(), true ),
DARKMAGENTA ) );
aList.push_back( MSG_PANEL_ITEM( _( "NC Width" ),
::CoordinateToString( netclass->GetTrackWidth(), true ),
DARKMAGENTA ) );
aList.push_back( MSG_PANEL_ITEM( _( "NC Via Size" ),
::CoordinateToString( netclass->GetViaDiameter(), true ),
DARKMAGENTA ) );
aList.push_back( MSG_PANEL_ITEM( _( "NC Via Drill"),
::CoordinateToString( netclass->GetViaDrill(), true ),
DARKMAGENTA ) );
}
}
2009-10-27 10:55:46 +00:00
void TRACK::GetMsgPanelInfoBase( std::vector< MSG_PANEL_ITEM >& aList )
{
wxString msg;
BOARD* board = GetBoard();
2007-09-01 12:00:30 +00:00
switch( Type() )
{
case PCB_VIA_T:
2011-12-14 04:29:25 +00:00
switch( GetShape() )
{
default:
case 0:
msg = wxT( "???" ); // Not used yet, does not exist currently
break;
case 1:
msg = _( "Micro Via" ); // from external layer (TOP or BOTTOM) from
// the near neighbor inner layer only
break;
case 2:
msg = _( "Blind/Buried Via" ); // from inner or external to inner
// or external layer (no restriction)
break;
case 3:
msg = _( "Through Via" ); // Usual via (from TOP to BOTTOM layer only )
break;
}
break;
case PCB_TRACE_T:
msg = _( "Track" );
break;
case PCB_ZONE_T:
msg = _( "Zone" );
break;
default:
msg = wxT( "???" );
break;
}
aList.push_back( MSG_PANEL_ITEM( _( "Type" ), msg, DARKCYAN ) );
2008-02-19 00:30:10 +00:00
// Display Net Name (in Pcbnew)
if( board )
{
NETINFO_ITEM* net = GetNet();
2007-10-19 06:31:17 +00:00
if( net )
msg = net->GetNetname();
else
msg = wxT( "<noname>" );
2007-10-19 06:31:17 +00:00
aList.push_back( MSG_PANEL_ITEM( _( "NetName" ), msg, RED ) );
/* Display net code : (useful in test or debug) */
msg.Printf( wxT( "%d.%d" ), GetNetCode(), GetSubNet() );
aList.push_back( MSG_PANEL_ITEM( _( "NetCode" ), msg, RED ) );
}
#if defined(DEBUG)
// Display the flags
msg.Printf( wxT( "0x%08X" ), m_Flags );
aList.push_back( MSG_PANEL_ITEM( wxT( "Flags" ), msg, BLUE ) );
#if 0
// Display start and end pointers:
msg.Printf( wxT( "%p" ), start );
aList.push_back( MSG_PANEL_ITEM( wxT( "start ptr" ), msg, BLUE ) );
msg.Printf( wxT( "%p" ), end );
aList.push_back( MSG_PANEL_ITEM( wxT( "end ptr" ), msg, BLUE ) );
// Display this ptr
msg.Printf( wxT( "%p" ), this );
aList.push_back( MSG_PANEL_ITEM( wxT( "this" ), msg, BLUE ) );
#endif
#if 0
// Display start and end positions:
msg.Printf( wxT( "%d %d" ), m_Start.x, m_Start.y );
aList.push_back( MSG_PANEL_ITEM( wxT( "Start pos" ), msg, BLUE ) );
msg.Printf( wxT( "%d %d" ), m_End.x, m_End.y );
aList.push_back( MSG_PANEL_ITEM( wxT( "End pos" ), msg, BLUE ) );
#endif
#endif // defined(DEBUG)
/* Display the State member */
msg = wxT( ". . " );
if( GetState( TRACK_LOCKED ) )
msg[0] = 'F';
2007-10-19 06:31:17 +00:00
if( GetState( TRACK_AR ) )
msg[2] = 'A';
2007-10-19 06:31:17 +00:00
aList.push_back( MSG_PANEL_ITEM( _( "Status" ), msg, MAGENTA ) );
2007-10-19 06:31:17 +00:00
/* Display layer or layer pair) */
if( Type() == PCB_VIA_T )
{
SEGVIA* Via = (SEGVIA*) this;
LAYER_NUM top_layer, bottom_layer;
2007-10-19 06:31:17 +00:00
* KIWAY Milestone A): Make major modules into DLL/DSOs. ! The initial testing of this commit should be done using a Debug build so that all the wxASSERT()s are enabled. Also, be sure and keep enabled the USE_KIWAY_DLLs option. The tree won't likely build without it. Turning it off is senseless anyways. If you want stable code, go back to a prior version, the one tagged with "stable". * Relocate all functionality out of the wxApp derivative into more finely targeted purposes: a) DLL/DSO specific b) PROJECT specific c) EXE or process specific d) configuration file specific data e) configuration file manipulations functions. All of this functionality was blended into an extremely large wxApp derivative and that was incompatible with the desire to support multiple concurrently loaded DLL/DSO's ("KIFACE")s and multiple concurrently open projects. An amazing amount of organization come from simply sorting each bit of functionality into the proper box. * Switch to wxConfigBase from wxConfig everywhere except instantiation. * Add classes KIWAY, KIFACE, KIFACE_I, SEARCH_STACK, PGM_BASE, PGM_KICAD, PGM_SINGLE_TOP, * Remove "Return" prefix on many function names. * Remove obvious comments from CMakeLists.txt files, and from else() and endif()s. * Fix building boost for use in a DSO on linux. * Remove some of the assumptions in the CMakeLists.txt files that windows had to be the host platform when building windows binaries. * Reduce the number of wxStrings being constructed at program load time via static construction. * Pass wxConfigBase* to all SaveSettings() and LoadSettings() functions so that these functions are useful even when the wxConfigBase comes from another source, as is the case in the KICAD_MANAGER_FRAME. * Move the setting of the KIPRJMOD environment variable into class PROJECT, so that it can be moved into a project variable soon, and out of FP_LIB_TABLE. * Add the KIWAY_PLAYER which is associated with a particular PROJECT, and all its child wxFrames and wxDialogs now have a Kiway() member function which returns a KIWAY& that that window tree branch is in support of. This is like wxWindows DNA in that child windows get this member with proper value at time of construction. * Anticipate some of the needs for milestones B) and C) and make code adjustments now in an effort to reduce work in those milestones. * No testing has been done for python scripting, since milestone C) has that being largely reworked and re-thought-out.
2014-03-20 00:42:08 +00:00
Via->LayerPair( &top_layer, &bottom_layer );
2013-12-29 11:01:54 +00:00
if( board )
msg = board->GetLayerName( top_layer ) + wxT( "/" )
+ board->GetLayerName( bottom_layer );
else
msg.Printf(wxT("%d/%d"), top_layer, bottom_layer );
}
else
{
2013-12-29 11:01:54 +00:00
if( board )
msg = board->GetLayerName( m_Layer );
else
msg.Printf(wxT("%d"), m_Layer );
}
aList.push_back( MSG_PANEL_ITEM( _( "Layer" ), msg, BROWN ) );
// Display width
msg = ::CoordinateToString( (unsigned) m_Width );
2007-10-19 06:31:17 +00:00
if( Type() == PCB_VIA_T ) // Display Diam and Drill values
{
2009-05-21 12:45:21 +00:00
// Display diameter value:
aList.push_back( MSG_PANEL_ITEM( _( "Diam" ), msg, DARKCYAN ) );
2009-05-21 12:45:21 +00:00
// Display drill value
int drill_value = GetDrillValue();
2007-10-19 06:31:17 +00:00
2013-05-04 11:57:09 +00:00
msg = ::CoordinateToString( drill_value );
2007-10-19 06:31:17 +00:00
wxString title = _( "Drill" );
title += wxT( " " );
2007-10-19 06:31:17 +00:00
2009-05-21 12:45:21 +00:00
if( m_Drill >= 0 )
title += _( "(Specific)" );
else
title += _( "(Default)" );
2007-10-19 06:31:17 +00:00
aList.push_back( MSG_PANEL_ITEM( title, msg, RED ) );
}
else
{
aList.push_back( MSG_PANEL_ITEM( _( "Width" ), msg, DARKCYAN ) );
}
// Display segment length
if( Type() != PCB_VIA_T ) // Display Diam and Drill values
{
msg = ::LengthDoubleToString( GetLength() );
aList.push_back( MSG_PANEL_ITEM( _( "Segment Length" ), msg, DARKCYAN ) );
}
}
bool TRACK::HitTest( const wxPoint& aPosition )
2007-08-08 20:51:08 +00:00
{
int max_dist = m_Width >> 1;
2008-03-05 22:39:33 +00:00
if( Type() == PCB_VIA_T )
2008-03-05 22:39:33 +00:00
{
// rel_pos is aPosition relative to m_Start (or the center of the via)
wxPoint rel_pos = aPosition - m_Start;
double dist = (double) rel_pos.x * rel_pos.x + (double) rel_pos.y * rel_pos.y;
return dist <= (double) max_dist * max_dist;
2008-03-05 22:39:33 +00:00
}
return TestSegmentHit( aPosition, m_Start, m_End, max_dist );
2007-10-19 06:31:17 +00:00
}
2007-08-09 01:41:30 +00:00
bool TRACK::HitTest( const EDA_RECT& aRect, bool aContained, int aAccuracy ) const
2008-01-06 12:43:57 +00:00
{
EDA_RECT box;
EDA_RECT arect = aRect;
arect.Inflate( aAccuracy );
if( Type() == PCB_VIA_T )
{
box.SetOrigin( GetStart() );
box.Inflate( GetWidth() >> 1 );
if(aContained)
return arect.Contains( box );
else
return arect.Intersects( box );
}
else
{
if( aContained )
// Tracks are a specila case:
// they are considered inside the rect if one end
// is inside the rect
return arect.Contains( GetStart() ) || arect.Contains( GetEnd() );
else
return arect.Intersects( GetStart(), GetEnd() );
}
2008-01-06 12:43:57 +00:00
}
TRACK* TRACK::GetVia( const wxPoint& aPosition, LAYER_NUM aLayer)
{
TRACK* track;
for( track = this; track; track = track->Next() )
{
if( track->Type() != PCB_VIA_T )
continue;
if( !track->HitTest( aPosition ) )
continue;
if( track->GetState( BUSY | IS_DELETED ) )
continue;
if( aLayer == UNDEFINED_LAYER )
break;
if( track->IsOnLayer( aLayer ) )
break;
}
return track;
}
TRACK* TRACK::GetVia( TRACK* aEndTrace, const wxPoint& aPosition, LAYER_MSK aLayerMask )
{
TRACK* trace;
for( trace = this; trace != NULL; trace = trace->Next() )
{
if( trace->Type() == PCB_VIA_T )
{
if( aPosition == trace->m_Start )
{
if( trace->GetState( BUSY | IS_DELETED ) == 0 )
{
if( aLayerMask & trace->GetLayerMask() )
return trace;
}
}
}
if( trace == aEndTrace )
break;
}
return NULL;
}
TRACK* TRACK::GetTrace( TRACK* aStartTrace, TRACK* aEndTrace, int aEndPoint )
{
const int NEIGHTBOUR_COUNT_MAX = 50;
TRACK* previousSegment;
TRACK* nextSegment;
int Reflayer;
wxPoint position;
int ii;
int max_dist;
if( aEndPoint == FLG_START )
position = m_Start;
else
position = m_End;
Reflayer = GetLayerMask();
previousSegment = nextSegment = this;
// Local search:
for( ii = 0; ii < NEIGHTBOUR_COUNT_MAX; ii++ )
{
if( (nextSegment == NULL) && (previousSegment == NULL) )
break;
if( nextSegment )
{
if( nextSegment->GetState( BUSY | IS_DELETED ) )
goto suite;
if( nextSegment == this )
goto suite;
/* max_dist is the max distance between 2 track ends which
* ensure a copper continuity */
max_dist = ( nextSegment->m_Width + this->m_Width ) / 2;
if( IsNear( position, nextSegment->m_Start, max_dist ) )
{
if( Reflayer & nextSegment->GetLayerMask() )
return nextSegment;
}
if( IsNear( position, nextSegment->m_End, max_dist ) )
{
if( Reflayer & nextSegment->GetLayerMask() )
return nextSegment;
}
suite:
if( nextSegment == aEndTrace )
nextSegment = NULL;
else
nextSegment = nextSegment->Next();
}
if( previousSegment )
{
if( previousSegment->GetState( BUSY | IS_DELETED ) )
goto suite1;
if( previousSegment == this )
goto suite1;
max_dist = ( previousSegment->m_Width + m_Width ) / 2;
if( IsNear( position, previousSegment->m_Start, max_dist ) )
{
if( Reflayer & previousSegment->GetLayerMask() )
return previousSegment;
}
if( IsNear( position, previousSegment->m_End, max_dist ) )
{
if( Reflayer & previousSegment->GetLayerMask() )
return previousSegment;
}
suite1:
if( previousSegment == aStartTrace )
previousSegment = NULL;
else if( previousSegment->Type() != PCB_T )
previousSegment = previousSegment->Back();
else
previousSegment = NULL;
}
}
// General search
for( nextSegment = aStartTrace; nextSegment != NULL; nextSegment = nextSegment->Next() )
{
if( nextSegment->GetState( IS_DELETED | BUSY ) )
{
if( nextSegment == aEndTrace )
break;
continue;
}
if( nextSegment == this )
{
if( nextSegment == aEndTrace )
break;
continue;
}
max_dist = ( nextSegment->m_Width + m_Width ) / 2;
if( IsNear( position, nextSegment->m_Start, max_dist ) )
{
if( Reflayer & nextSegment->GetLayerMask() )
return nextSegment;
}
if( IsNear( position, nextSegment->m_End, max_dist ) )
{
if( Reflayer & nextSegment->GetLayerMask() )
return nextSegment;
}
if( nextSegment == aEndTrace )
break;
}
return NULL;
}
int TRACK::GetEndSegments( int aCount, TRACK** aStartTrace, TRACK** aEndTrace )
{
TRACK* Track, * via, * segm, * TrackListEnd;
int NbEnds, ii, ok = 0;
LAYER_MSK layerMask;
if( aCount <= 1 )
{
*aStartTrace = *aEndTrace = this;
return 1;
}
/* Calculation of the limit analysis. */
*aStartTrace = *aEndTrace = NULL;
TrackListEnd = Track = this;
ii = 0;
for( ; ( Track != NULL ) && ( ii < aCount ); ii++, Track = Track->Next() )
{
TrackListEnd = Track;
Track->m_Param = 0;
}
/* Calculate the extremes. */
NbEnds = 0;
Track = this;
ii = 0;
for( ; ( Track != NULL ) && ( ii < aCount ); ii++, Track = Track->Next() )
{
if( Track->Type() == PCB_VIA_T )
continue;
layerMask = Track->GetLayerMask();
via = GetVia( TrackListEnd, Track->m_Start, layerMask );
if( via )
{
layerMask |= via->GetLayerMask();
via->SetState( BUSY, true );
}
Track->SetState( BUSY, true );
segm = ::GetTrace( this, TrackListEnd, Track->m_Start, layerMask );
Track->SetState( BUSY, false );
if( via )
via->SetState( BUSY, false );
if( segm == NULL )
{
switch( NbEnds )
{
case 0:
*aStartTrace = Track; NbEnds++;
break;
case 1:
int BeginPad, EndPad;
*aEndTrace = Track;
/* Swap ox, oy with fx, fy */
BeginPad = Track->GetState( BEGIN_ONPAD );
EndPad = Track->GetState( END_ONPAD );
Track->SetState( BEGIN_ONPAD | END_ONPAD, false );
if( BeginPad )
Track->SetState( END_ONPAD, true );
if( EndPad )
Track->SetState( BEGIN_ONPAD, true );
EXCHG( Track->m_Start, Track->m_End );
EXCHG( Track->start, Track->end );
ok = 1;
return ok;
}
}
layerMask = Track->GetLayerMask();
via = GetVia( TrackListEnd, Track->m_End, layerMask );
if( via )
{
layerMask |= via->GetLayerMask();
via->SetState( BUSY, true );
}
Track->SetState( BUSY, true );
segm = ::GetTrace( this, TrackListEnd, Track->m_End, layerMask );
Track->SetState( BUSY, false );
if( via )
via->SetState( BUSY, false );
if( segm == NULL )
{
switch( NbEnds )
{
case 0:
int BeginPad, EndPad;
*aStartTrace = Track;
NbEnds++;
/* Swap ox, oy with fx, fy */
BeginPad = Track->GetState( BEGIN_ONPAD );
EndPad = Track->GetState( END_ONPAD );
Track->SetState( BEGIN_ONPAD | END_ONPAD, false );
if( BeginPad )
Track->SetState( END_ONPAD, true );
if( EndPad )
Track->SetState( BEGIN_ONPAD, true );
EXCHG( Track->m_Start, Track->m_End );
EXCHG( Track->start, Track->end );
break;
case 1:
*aEndTrace = Track;
ok = 1;
return ok;
}
}
}
return ok;
}
wxString TRACK::GetSelectMenuText() const
{
wxString text;
wxString netname;
NETINFO_ITEM* net;
BOARD* board = GetBoard();
// deleting tracks requires all the information we can get to
// disambiguate all the choices under the cursor!
if( board )
{
net = GetNet();
if( net )
netname = net->GetNetname();
else
netname = _("Not found");
}
else
{
wxFAIL_MSG( wxT( "TRACK::GetSelectMenuText: BOARD is NULL" ) );
netname = wxT( "???" );
}
text.Printf( _("Track %s, net [%s] (%d) on layer %s, length: %s" ),
GetChars( ShowWidth() ), GetChars( netname ),
GetNetCode(), GetChars( GetLayerName() ),
GetChars( ::LengthDoubleToString( GetLength() ) ) );
return text;
}
2009-05-21 12:45:21 +00:00
#if defined(DEBUG)
wxString TRACK::ShowState( int stateBits )
{
wxString ret;
if( stateBits & IS_LINKED )
ret << wxT( " | IS_LINKED" );
if( stateBits & TRACK_AR )
ret << wxT( " | TRACK_AR" );
if( stateBits & TRACK_LOCKED )
ret << wxT( " | TRACK_LOCKED" );
if( stateBits & IN_EDIT )
ret << wxT( " | IN_EDIT" );
if( stateBits & IS_DRAGGED )
ret << wxT( " | IS_DRAGGED" );
if( stateBits & DO_NOT_DRAW )
ret << wxT( " | DO_NOT_DRAW" );
if( stateBits & IS_DELETED )
ret << wxT( " | IS_DELETED" );
if( stateBits & BUSY )
ret << wxT( " | BUSY" );
if( stateBits & END_ONPAD )
ret << wxT( " | END_ONPAD" );
if( stateBits & BEGIN_ONPAD )
ret << wxT( " | BEGIN_ONPAD" );
if( stateBits & FLAG0 )
ret << wxT( " | FLAG0" );
if( stateBits & FLAG1 )
ret << wxT( " | FLAG1" );
return ret;
}
2007-08-09 01:41:30 +00:00
#endif