This way the net names can be inspected in eeschema and cross-probing works.
Testcases updated for the name changes
CHANGED: all unconnected pins are now included in the netlist with no_connect_ prefixes
This behavior provided shorter net names, but was confusing if
the user gives an explicit strong driver in the subsheet but not
one in the parent sheet.
Testcases updated for net name changes; connectivity is the same
Fixes https://gitlab.com/kicad/code/kicad/-/issues/4201
Depending on what order the subgraphs are processed in, it's
possible to hit a case where the parent sheet renames a bus
member before the bus neighbor renaming logic runs. In this
case, we don't want to apply the bus neighbor logic as it will
break connectivity to the parent sheet if that bus was not
also renamed (for example, if the hier ports only make net
connections and not bus connections)
Fixes https://gitlab.com/kicad/code/kicad/-/issues/6887
In particular, there was a typo that kept library values from being
updated, and there was missing logic to fetch the various field names
from the library parts (and the change-to part).
Also implements some performance gains by desisting from copying
LIB_FIELDs around every time we want to look at them.
Fixes https://gitlab.com/kicad/code/kicad/issues/6733
Fixes https://gitlab.com/kicad/code/kicad/issues/6749
This unifies everything under a single architecture with a "don't
show again" dialog. Since everything now goes through the same
path it should be reasonably easy to make it do whatever we want
in the future.
Right now it presents 3 options: modify only unlocked items, override
locks and modify all items, or cancel command.
Also a rationalization of text polygon generators, with the "standard"
version inherited from BOARD_ITEM now giving the bounding box. This
requires callers who want the (much) more expensive stroke-based one
to call it explicitly (and brings PCB_TEXT in line with the was FP_TEXT
already was.
Fixes https://gitlab.com/kicad/code/kicad/issues/6525
This fixes some DXFs imports where unforunately CAD tools like SolidWorks
randomly decide to mirror circle definitions across the "z" axis (resulting in x or y axis flips in 2d)
Most likely live projection from 3D to 2D drawings introduces this.
However this is DXF specification to describe it so obtusely with vectors for a 2d drawing.
1) Tests can't expect accuracies around 1 to work. PCBNew defaults
to 5000.
2) Tests shouldn't artifically expand tolerance just to match the
results.
3) Tests should guarantee that end point is on arc, not just close
to it.
4) Standard polygonization of a circle is inside so splitting the
error needs to increase radius, not decrease.
5) Special-case first and last points so that they're exact.
The groundwork has now been laid for per sheet instance data. Initially
this only supports sheet page numbers but could be expanded to include
other per sheet instance information.
ADDED: Support for user defined schematic page numbers.
Previously disambiguation was looking for exact matches,
but vector buses are permitted to have different ranges and
still participate in merging, so they need to be disambiguated.
Fixes https://gitlab.com/kicad/code/kicad/-/issues/5925
Note, the original markdown spec specifies using 4 spaces to indent a
code block (https://daringfireball.net/projects/markdown/syntax)
Wrapping with three backticks doesn't work with this lib. Wrapping
with a single backtick for span elements works ok.
in most of files, including wx.h is not necessary, when only 2 or 3 wx files must be included.
Moreover, on windows, including wx.h sometimes create compil warnings about
shadowed vars defined in some specific windows headers.
Also simplifies groups so that other areas of code that have to know
about them at least don't have to know as much. One of the simplifications
is to not worry so much about empty groups until save time; others are in
the access logic to parent groups.
Also simplifies user model slightly by removing Merge and Flatten
(which are just ungroup/group and ungroup/ungroup/.../group).
Also allows multiple groups to have the same name. This is useful when
using groups for a classification system.
Fixes https://gitlab.com/kicad/code/kicad/issues/5788
This changes the file format. All previous copper layers that had a user
defined name are forced back to the canonical name and the user defined
name is stored as an optional quoted string in the layer definition and
only used for UI and plotting purposes. All copper object layer names
are now the canonical name for internal file use.
ADDED: Nine new user definable non-copper layers that can be optionally
added to the board layer stack.
CHANGED: All board layers can now be renamed by the user.
CHANGED: User defined layer names can now contain space characters.
Fixes https://gitlab.com/kicad/code/kicad/issues/1969
Improves implicit rule reporting.
Makes some internal names more consistent.
Moves DRC_REPORT to the test framework.
Removes priority (which isn't supported in the grammar)
code refactoring:
- Renamed CADSTAR_COMMON to CADSTAR_ARCHIVE_COMMON
- Renamed CPA_FILE to CADSTAR_PCB_ARCHIVE_PARSER
- Made CADSTAR_PCB_ARCHIVE_PARSER a derived class of CADSTAR_ARCHIVE_COMMON
- Moved all structures in cadstar_pcb_archive_parser.h/.cpp to be defined inside CADSTAR_PCB_ARCHIVE_PARSER class
Removed the bitmap status field that saved internal states into the
file, creating rcs churn. Also removed the unneeded count variables at
the start of the file as these created merge conflicts for every board
that had multiple revisions
Fixes https://gitlab.com/kicad/code/kicad/issues/1850
The use of printf, wxLogDebug, and std::err/std::out causes excessive
debugging output which makes finding specific debugging messages more
difficult than it needs to be.
There is still some debugging output in test code that really needs to
be moved into a unit test.
Add debugging output section to the coding policy regarding debugging
output.
This introduces layer handling to a lot of the geometry routines.
Many of them don't do much with it now, but it does help multi-layer
zones and will help when padstacks are implemented.
This implements a copper-layer RTree with functions for iterating over
the elements in a copper layer and providing Nearest Neighbor returns
for BOARD_CONNECTED_ITEMS
ADDED: Progress indicator in the taskbar
This adds a progress indicator to the Windows and macOS taskbar
icons to display the progress of some operations.
Note, this requires wxWidgets 3.1+
- convert expression string tokens to single-quote-delimited
- fix bug where netclass assignments weren't getting updated after
board setup dialog
- move property manager rebuild to lazy evaluation
- improve performance with wider use of const&
- retire DRC_SELECTOR stuff
- use wxString for GUI stuff (particularly translated stuff)
- fix EqualTo() to return false instead of asserting when op types
don't match
- fix buffer overruns with fixed-size string buffers
- make expression function calls case-insensitive
- integrate expression errors into rule parser
- produce more and better error messages
- keep BOARD_ITEM ptrs const as long as possible
- fix a couple of uninitialized variables
This moves the program-specific code (e.g. BIU files) into
the program tests.
Also, create title_block.cpp to break a dependency that pulled
in eda_text.cpp when using the TITLE_BLOCK object.
Adds a possibility to replace properties inherited from base types with
a more specific ones. For example, such properties may have:
- different meaning which should be reflected in property name
(e.g. TRACK::{G,S}etWidth() sets actual track width, but
VIA::{G,S}etWidth() modifies the diameter)
- different set of possible values (e.g. BOARD_CONNECTED_ITEM::SetLayer()
should accept any copper layer, but MODULE::SetLayer() works only with
F.Cu and B.Cu)
Introduces classes:
- INSPECTED: base class for types taking advantage of
generic properties system.
- PROPERTY*: meta-data storing information about properties
- PROPERTY_MANAGER: singleton class to get properties data
- Fix file extension for new project
- Fixes for exceptions on MSW
- Fix some ASAN issues
- Allow SETTINGS_MANAGER to run headless
- Don't flag schematic as modified after schematic setup is closed
- Don't automatically unload projects when LoadProject is called
- Don't unload project if it's the same as the current one
- Make sure to properly init/de-init template field names
Various architecture upgrades to support this.
Creating a BOARD now requires a valid PROJECT, which caused
some (mostly transparent) changes to the Python API internals.
ADDED: Project local settings file
CHANGED: Board design settings are no longer stored in PCB file
CHANGED: Net classes are no longer stored in PCB file
CHANGED: Importing board settings now reads boards, not just projects
Fixes https://gitlab.com/kicad/code/kicad/-/issues/2578
Fixes https://gitlab.com/kicad/code/kicad/-/issues/4070
1) An actual distance of 0 is still a collision, even if the allowed
distance is 0.
2) Be consitent about edges and interiors. Everyone expect the edge
of a RECT to be part of the RECT; same with a CIRCLE. SHAPE_POLY_SET
shouldn't be any different. (And SHAPE_LINE_CHAIN was a split-
personality with the edge considered part of it for Collide() but not
for PointInside()).
The arc shapes need to connect with their adjacent points. By storing
the relevant points, we allow exact point matching on both ends of the
arc as well as localize point storage.
CHANGED: All mandatory fields in derived symbols can be edited. This
not only includes the field value but also all text properties.
Kill the dual datasheet variable storage which caused many datasheet
bugs over the years. The datasheet is now always stored in the data
sheet field.
You can now choose the behavior of dragging with the
middle and right mouse buttons.
You can also choose which modifier keys to use for
panning and zooming with the scroll wheel or trackpad.
You can also customize the zoom speed, which makes
it possible to have a good zoom experience on a wider
range of input devices.
You can also now zoom by dragging with the right or
middle button if desired.
Fixes https://gitlab.com/kicad/code/kicad/-/issues/3885
Fixes https://gitlab.com/kicad/code/kicad/-/issues/4348
Set up a new lineage for SCH_ITEMS to get back to the SCHEMATIC
they live on: Items will all be parented to the SCH_SCREEN that
they are added to, and each SCH_SCREEN will point back to the
SCHEMATIC that it is part of. Note that this hierarchy is not
the same as the actual schematic hierarchy, which continues to
be managed through SCH_SHEETs and SCH_SHEET_PATHS.
This is a very large and potentially disruptive change so this will be an
unusually long and detailed commit message.
The new file formats are now the default in both the schematic and symbol
library editors. Existing symbol libraries will be saved in their current
format until new features are added to library symbols. Once this happens,
both the legacy schematic and symbol file formats will be no longer be
savable and existing libraries will have to be converted. Saving to the
legacy file formats is still available for round robin testing and should
not be used for normal editing.
When loading the legacy schematic file, it is imperative that the schematic
library symbols are rescued and/or remapped to valid library identifiers.
Otherwise, there will be no way to link to the original library symbol and
the user will be required manually set the library identifier. The cached
symbol will be saved in the schematic file so the last library symbol in
the cache will still be used but there will be no way to update it from the
original library.
The next save after loading a legacy schematic file will be converted to
the s-expression file format. Schematics with hierarchical sheets will
automatically have all sheet file name extensions changed to .kicad_sym
and saved to the new format as well.
Appending schematics requires that the schematic to append has already been
converted to the new file format. This is required to ensure that library
symbols are guaranteed to be valid for the appended schematic.
The schematic symbol library symbol link resolution has been moved out of
the SCH_COMPONENT object and move into the SCH_SCREEN object that owns the
symbol. This was done to ensure that there is a single place where the
library symbol links get resolved rather than the dozen or so different
code paths that previously existed. It also removes the necessity of the
SCH_COMPONENT object of requiring any knowledge of the symbol library table
and/or the cache library.
When opening an s-expression schematic, the legacy cache library is not
loaded so any library symbols not rescued cannot be loaded. Broken library
symbol links will have to be manually resolved by adding the cache library
to the symbol library table and changing the links in the schematic symbol.
Now that the library symbols are embedded in the schematic file, the
SCH_SCREEN object maintains the list of library symbols for the schematic
automatically. No external manipulation of this library cache should ever
occur.
ADDED: S-expression schematic and symbol library file formats.