Also a rationalization of text polygon generators, with the "standard"
version inherited from BOARD_ITEM now giving the bounding box. This
requires callers who want the (much) more expensive stroke-based one
to call it explicitly (and brings PCB_TEXT in line with the was FP_TEXT
already was.
Fixes https://gitlab.com/kicad/code/kicad/issues/6525
It shows much more detail. Removes some nag dialogs and places
hypertext links in others.
Also fixes the auto-layer-showing to correctly show Edge.Cuts or
F.CrtYd or B.CrtYd for errors relating to them.
Fixes https://gitlab.com/kicad/code/kicad/issues/6446
wxWidgets 3.1.5+ on Linux will compile with the Wayland EGL
canvas as the backend instead of the X11 backend. This requires a
version of GLEW compiled with the proper EGL defines and a different
header/code for certain parts that are X11 GLEW specific.
This introduces an in-tree version of GLEW that will be built with the
GLEW_EGL flag then statically linked into the KiCad executables when
EGL support is needed.
- Check that we aren't already painting (return if we are)
- Check that GLEW functions exist before calling them in 3D canvas and throw exception if they are no longer available
- Catch above exceptions in paint routine and show an infobar message to the user
Fixes https://gitlab.com/kicad/code/kicad/-/issues/6246
This is a board file format change to account for the new properties.
Also, we now only store the critical information about the dimension's
geometry in the board, rather than storing every drawn line.
The DIMENSION object is now an abstract base, and ALIGNED_DIMENSION
is the implementation that exists today (we will add more dimension
types in the future)
1) For a while now we've been using a calculated seg count from a given
maxError, and a correction factor to push the radius out so that all
the error is outside the arc/circle. However, the second calculation
(which pre-dates the first) is pretty much just the inverse of the first
(and yields nothing more than maxError back). This is particularly
sub-optimal given the cost of trig functions.
2) There are a lot of old optimizations to reduce segcounts in certain
situations, someting that our error-based calculation compensates for
anyway. (Smaller radii need fewer segments to meet the maxError
condition.) But perhaps more importantly we now surface maxError in the
UI and we don't really want to call it "Max deviation except when it's
not".
3) We were also clamping the segCount twice: once in the calculation
routine and once in most of it's callers. Furthermore, the caller
clamping was inconsistent (both in being done and in the clamping
value). We now clamp only in the calculation routine.
4) There's no reason to use the correction factors in the 3Dviewer;
it's just a visualization and whether the polygonization error is
inside or outside the shape isn't really material.
5) The arc-correction-disabling stuff (used for solder mask layer) was
somewhat fragile in that it depended on the caller to turn it back on
afterwards. It's now only exposed as a RAII object which automatically
cleans up when it goes out of scope.
6) There were also bugs in a couple of the polygonization routines where
we'd accumulate round-off error in adding up the segments and end up with
an overly long last segment (which of course would voilate the error
max). This was the cause of the linked bug and also some issues with vias
that we had fudged in the past with extra clearance.
Fixes https://gitlab.com/kicad/code/kicad/issues/5567
... instead of modifying the argument.
This will make the method usable in python API and will not incur
permormance penalty because named return value optimization (NRVO)
is a thing since C++11.
But even if copy is not elided vector is moved instead of copied.
https://en.cppreference.com/w/cpp/language/copy_elision
The use of printf, wxLogDebug, and std::err/std::out causes excessive
debugging output which makes finding specific debugging messages more
difficult than it needs to be.
There is still some debugging output in test code that really needs to
be moved into a unit test.
Add debugging output section to the coding policy regarding debugging
output.
Remove some hacks related to postprocessing (not need now because the
previous postprocessing improvements, light parametrization could be
used for tune or future parameters could be implemented)
This introduces layer handling to a lot of the geometry routines.
Many of them don't do much with it now, but it does help multi-layer
zones and will help when padstacks are implemented.
Swap syncs can limit the redraw rate as the screen waits for previously
issued syncs. Setting this to -1 allows for adaptive swapping
(resorting to unsynced if it falls behind) if it is supported by the
card but will fall back to unsynced (0) if the adaptive is not
supported.
Fixes https://gitlab.com/kicad/code/kicad/issues/4226
Various architecture upgrades to support this.
Creating a BOARD now requires a valid PROJECT, which caused
some (mostly transparent) changes to the Python API internals.
ADDED: Project local settings file
CHANGED: Board design settings are no longer stored in PCB file
CHANGED: Net classes are no longer stored in PCB file
CHANGED: Importing board settings now reads boards, not just projects
Fixes https://gitlab.com/kicad/code/kicad/-/issues/2578
Fixes https://gitlab.com/kicad/code/kicad/-/issues/4070
There were a lot of plotters, exporters, etc. that were rolling their
own implementations.
This also introduces a lazily-built set of SHAPE objects for doing
collision detection and some forms of rendering (and later DRC).
Dragging filled zones in OpenGL was extremely slow due to the
invalidated triangulation cache. Moving the zone should also move the
triangles and keep the cache valid.
It's currently only supported in the Footprint Editor. It could be
easily added to the board editor (all the code is there), but the board
editor is a little short on room in the drawing tools toolbar.
Move the camera out to its own so that everything else is board-
related, and then rename BOARD_ADAPTER.
At some point the flags should probably be moved out too, and they
can have the EDA_3D_SETTINGS name.
Replace SEVERITY_ERROR by RPT_SEVERITY_ERROR to avoid collision with a system definition.
Replace other SEVERITY_XXX by RPT_SEVERITY_XX for consistency.
Fix compil warnings and some other compil issues.
CHANGED: Settings are now stored in versioned sub-directories
ADDED: First-run dialog for migrating settings from a previous version
CHANGED: Settings are now stored as JSON files instead of wxConfig-style INI files
CHANGED: Color settings are now all stored in a separate settings file
CHANGED: The symbol editor and footprint editor now have their own settings files
CHANGED: Color settings are no longer exposed through BOARD object
CHANGED: Page layout editor now uses Eeschema's color scheme
Settings are now managed through a central SETTINGS_MANAGER held by PGM_BASE.
Existing settings will be migrated from the wxConfig format on first run of each application.
Per-application settings are now stored in one class for each application.
Previously, OnModify() was called for a lot of items, even when not modified.
For large schematics, the calculation time was unreasonable ( several minutes)
It is now called only a few times.
Remove holes on Silk layer by default so the behaviour is the same
on OpenGL and Raytracing.
Fixes#1836
Fix raytracing shadow offset issue.
Some codestyle fix.
* Split up the thirdparty code into the thirdparty folder (#3637)
* Create a new kimath static library containing all the math functions
This is part of cleaning the build system for #1906.
The 3d viewer is the last component to not use the action framework, so
we descope the common defines to its canvas. Once the 3d viewer is
converted, we can remove these entirely.
This corrects an issue with fill segments-per-circle and moves the error
to segmetns calculation down in a number of functions to expose the
single value for approximation
This removes the remaining hard-coded segments counts and replaces them
with the relative error calculation where the segments per arc is
determined by the maximum error we allow (smaller arcs = fewer segments)
Provide a toolkit-agnostic interface for "busy indicators", which
allows the 3D viewer to show a busy cursor, without the canvases
having to to know how a wxCursore works.
The motivation here is to decouple the 3D renderers from the WX
GUI system, as they can then be used when when there is not an
active window (e.g. for offscreen rendering).
Otherwise, attempting to use a wxBusyCursor without a GUI
available is an instant segfault.
For legacy boards, the setting is picked up from the board outline
thickness. If the board outline has mixed thicknesses, then the
max is used and a warning is displayed.
Fixes: lp:1797787
* https://bugs.launchpad.net/kicad/+bug/1797787
Allows 0 to 4 chamfered corners, not only one.
A custom shape allow this kind of shape. However because it is a primitive,
it is easier to edit and it support thermal reliefs.
Add code to parse OpenGL version string and determine if ray tracing is
supported.
Rationalize ray tracing menu and toolbar to have the same behavior so
a single command ID can be used for setting states.
Fixes lp:1797500
https://bugs.launchpad.net/kicad/+bug/1797500
The standard DIM() macro was not typesafe as it happily deferred errors
to runtime that can be caught at compile time. Replacing it with a
generic C++11 constexpr allows for typecasting, comparison and compile
time error checking.
Where we can get away with lower segment counts (localizing an anchor),
we keep the low-def 16 segment count. Intermediate values and values
that are visible to the user are set to high definition. Most are
simply hints to the inflation correction but where they show, the user
show see smooth lines.
Importing Eagle files allowed for invalid zone values for clearance and
minimum width that triggered asserts in the 3d-viewer.
Fixes: lp:1801188
* https://bugs.launchpad.net/kicad/+bug/1801188
This was due to clicking on the preview canvas does dot give the focus to the canvas on Windows.
Now the focus is set when clicking on this canvas.
Fixes: lp:1794090
https://bugs.launchpad.net/kicad/+bug/1794090
This commit finishes the removal of OpenMP from the KiCad codebase.
Removed in this commit are the OpenMP calls in 3d-viewer and
qa/polygon_triangulation as well as all references in CMakeLists.txt
std::thread is used instead for multithreaded computation
Previous commit mistakenly included the full clearance for the rounded
rectangle circle. The CFILLEDCIRCLE2d takes the radius rather than the
diameter.
Apply same logic of using a filled circle to represent a zero-length
element as a filled circle with radius of the line.
Fixes: lp:1785823
* https://bugs.launchpad.net/kicad/+bug/1785823
Replaces Poly2Tri with updated code to process polygons faster and more
robustly. Notably, we can now handle overlapping holes in the polygons,
allowing us to cache the triangulation of complex boards
Also fixes:
- forcing the annotation scope to "full schematic" when run
as a prerequisite to Generate Netlist.
- a long-standing bug where displaying extra items in a dialog
would mess up the height of the HTML_REPORT_PANEL (becasue
we were setting the html window's height rather than its
parent flexgrid.
- initializing the annotation radio buttons to safe values
(full schematic and keep existing)
Fixes: lp:1750062
* https://bugs.launchpad.net/kicad/+bug/1750062
- support for background color setting
- removed several global config settings (such as g_Drc_On)
- wrapped most of global config settings in PCB_GENERAL_SETTINGS class
- reorganized PCB general options dialog to clearly mark which options concern only the legacy canvas
- new GAL feature for legacy users: double-click (or E) to change track width available as an option.
Fixes: lp:1530543
* https://bugs.launchpad.net/kicad/+bug/1530543
Fixes: lp:1707145
* https://bugs.launchpad.net/kicad/+bug/1707145